HDU 1814 POI 2001 Peaceful Commission 2-SAT

本文介绍了一种使用2-SAT算法解决和平委员会成员选择问题的方法。通过构建特定的图结构并进行深度优先搜索来确定是否可以形成满足条件的委员会。算法能够处理多个测试用例,并在可行的情况下输出符合条件的成员编号。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正常的顺序跑一次2-SAT输出答案就好了。。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define ms(i) memset(i,0,sizeof(i))
const int N = 16005, M = 40005;

struct TwoSAT {
    int h[N], p[M], v[M], vis[N], stk[N], top, cnt, n;

    void add(int a, int b) {
        p[++cnt] = h[a]; v[cnt] = b; h[a] = cnt;
    }

    void init(int a) {
        cnt = 0; n = a; ms(vis); ms(h);
    }

    bool solve() {
        for (int i = 0; i < 2 * n; i += 2) if (!vis[i]&&!vis[i^1]) {
            top = 0;
            if (!dfs(i)) {
                while (top) vis[stk[--top]] = 0;
                if (!dfs(i ^ 1)) return 0;
            }
        }
        return 1;
    }

    bool dfs(int x) {
        if (vis[x ^ 1]) return 0;
        if (vis[x]) return 1;
        vis[x] = 1; stk[top++] = x;
        for (int i = h[x]; i; i = p[i])
            if (!dfs(v[i])) return 0;
        return 1;
    }
} g;

int main() {
    int n, m, a, b, c, i;
    char d[4];
    while (scanf("%d%d", &n, &m) == 2) {
        g.init(n);
        while (m--) {
            scanf("%d%d", &a, &b);
            --a; --b;
            g.add(a, b ^ 1); g.add(b, a ^ 1);
        }
        if (g.solve()) {
            for (i = 0; i < 2 * n; i ++) if (g.vis[i])
                printf("%d\n", i + 1);
        } else puts("NIE");
    }
    return 0;
}

Peaceful Commission

Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2746 Accepted Submission(s): 850

Problem Description

The Public Peace Commission should be legislated in Parliament of The Democratic Republic of Byteland according to The Very Important Law. Unfortunately one of the obstacles is the fact that some deputies do not get on with some others.

The Commission has to fulfill the following conditions:
1.Each party has exactly one representative in the Commission,
2.If two deputies do not like each other, they cannot both belong to the Commission.

Each party has exactly two deputies in the Parliament. All of them are numbered from 1 to 2n. Deputies with numbers 2i-1 and 2i belong to the i-th party .

Task

Write a program, which:
1.reads from the text file SPO.IN the number of parties and the pairs of deputies that are not on friendly terms,
2.decides whether it is possible to establish the Commission, and if so, proposes the list of members,
3.writes the result in the text file SPO.OUT.

Input

In the first line of the text file SPO.IN there are two non-negative integers n and m. They denote respectively: the number of parties, 1 <= n <= 8000, and the number of pairs of deputies, who do not like each other, 0 <= m <=2 0000. In each of the following m lines there is written one pair of integers a and b, 1 <= a < b <= 2n, separated by a single space. It means that the deputies a and b do not like each other.
There are multiple test cases. Process to end of file.

Output

The text file SPO.OUT should contain one word NIE (means NO in Polish), if the setting up of the Commission is impossible. In case when setting up of the Commission is possible the file SPO.OUT should contain n integers from the interval from 1 to 2n, written in the ascending order, indicating numbers of deputies who can form the Commission. Each of these numbers should be written in a separate line. If the Commission can be formed in various ways, your program may write mininum number sequence.

Sample Input

3 2
1 3
2 4

Sample Output

1
4
5

Source

POI 2001

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值