逻辑斯蒂回归LogisticRegression 案例01:良/恶性乳腺癌肿瘤诊断分类(逻辑回归算法模型)

本文通过逻辑回归算法,使用乳腺癌数据集进行良恶性肿瘤分类预测。从数据预处理到模型训练,最终实现对未知肿瘤类型的准确预测,并评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

#逻辑斯蒂回归LogisticRegression 案例01:良/恶性乳腺癌肿瘤诊断分类(逻辑回归算法模型)

from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False

column_names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
                'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli',
                'Mitoses', 'Class']

breast_cancer = pd.read_csv('breast-cancer-wisconsin.csv',names = column_names)

print(breast_cancer.head())
breast_cancer=breast_cancer.replace(to_replace='?',value=np.nan)
breast_cancer=breast_cancer.dropna(how='any')
X_train, X_test, y_train, y_test = train_test_split(breast_cancer[column_names[1:10]],
                                                    breast_cancer[column_names[10]],
                                                    test_size=0.25,
                                                    random_state=33)

print('训练样本数据集(X_train):\n{0}'.format(X_train))
print('训练样本标签集(Y_train):\n{0}'.format(y_train))
print('测试样本数据集(X_test):\n{0}'.format(X_test))
print('测试样本标签集(Y_test):\n{0}'.format(y_test))

lr=LogisticRegression()

lr.fit(X_train,y_train)

score=lr.score(X_test,y_test)
print('评估得分:',score)

result=lr.predict(X_test)
report=classification_report(y_test,result,target_names=['良性','恶性'])
print('评估报告:',report)

result=lr.predict([[2,1,1,1,2,1,3,1,1]])

print(result)
result=lr.predict([[10,7,7,3,8,5,7,4,3]])

print(result)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

huanghong6956

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值