java设计模式之单例模式_6种写法优缺点

单例模式的多种实现方式及优劣分析
本文详细介绍了单例模式的六种实现方法:懒汉式(线程不安全)、懒汉式(线程安全)、饿汉式、静态内部类、枚举、双重校验锁,并对比了它们的性能、并发安全性和懒加载特性。重点讨论了如何通过枚举类实现单例模式,以避免序列化和反射攻击,同时强调了枚举在实现单例模式时的优点,如自由序列化、线程安全和确保单例性。

第一种(懒汉,线程不安全):

public class Singleton {  
    private static Singleton instance;  
    private Singleton (){}  
  
    public static Singleton getInstance() {  
    if (instance == null) {  
        instance = new Singleton();  
    }  
    return instance;  
    }  
}  

 这种写法lazy loading很明显,但是致命的是在多线程不能正常工作。

第二种(懒汉,线程安全):

public class Singleton {  
    private static Singleton instance;  
    private Singleton (){}  
    public static synchronized Singleton getInstance() {  
    if (instance == null) {  
        instance = new Singleton();  
    }  
    return instance;  
    }  
}  

 这种写法能够在多线程中很好的工作,而且看起来它也具备很好的lazy loading,但是,遗憾的是,效率很低,99%情况下不需要同步。

第三种(饿汉):

public class Singleton {  
    private static Singleton instance = new Singleton();  
    private Singleton (){}  
    public static Singleton getInstance() {  
    return instance;  
    }  
}  

 这种方式基于classloder机制避免了多线程的同步问题,不过,instance在类装载时就实例化,虽然导致类装载的原因有很多种,在单例模式中大多数都是调用getInstance方法, 但是也不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化instance显然没有达到lazy loading的效果。

第四种(静态内部类):

public class Singleton {  
    private static class SingletonHolder {  
    private static final Singleton INSTANCE = new Singleton();  
    }  
    private Singleton (){}  
    public static final Singleton getInstance() {  
    return SingletonHolder.INSTANCE;  
    }  
}  

这种方式同样利用了classloder的机制来保证初始化instance时只有一个线程,它跟第三种和第四种方式不同的是(很细微的差别):第三种和第四种方式是只要Singleton类被装载了,那么instance就会被实例化(没有达到lazy loading效果),而这种方式是Singleton类被装载了,instance不一定被初始化。因为SingletonHolder类没有被主动使用,只有显示通过调用getInstance方法时,才会显示装载SingletonHolder类,从而实例化instance。想象一下,如果实例化instance很消耗资源,我想让他延迟加载,另外一方面,我不希望在Singleton类加载时就实例化,因为我不能确保Singleton类还可能在其他的地方被主动使用从而被加载,那么这个时候实例化instance显然是不合适的。这个时候,这种方式相比第三和第四种方式就显得很合理。

第五种(枚举):

public enum Singleton {  
    INSTANCE;  
    public void whateverMethod() {  
    }  
}  

 这种方式是Effective Java作者Josh Bloch 提倡的方式,它不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象,可谓是很坚强的壁垒啊,不过,个人认为由于1.5中才加入enum特性,用这种方式写不免让人感觉生疏,在实际工作中,我也很少看见有人这么写过。

第六种(双重校验锁):

public class Singleton {  
    private volatile static Singleton instance;  
    private Singleton (){}  
    public static Singleton getInstance() {  
       if (instance == null) {  
           synchronized (Singleton.class) {  
              if (instance == null) {  
                  instance = new Singleton();  
              }  
           }  
       }  
       return instance;  
    }  
}  

 这个是第二种方式的升级版,俗称双重检查锁定,详细介绍请查看:http://www.ibm.com/developerworks/cn/java/j-dcl.html

既达到了线程安全,又能提高代码执行效率。这里在声明变量时使用了volatile关键字来保证其线程间的可见性;在同步代码块中使用二次检查,以保证其不被重复实例化。集合其二者,这种实现方式既保证了其高效性,也保证了其线程安全性。

在JDK1.5之后,双重检查锁定才能够正常达到单例效果。

 

总结

有两个问题需要注意:

1.如果单例由不同的类装载器装入,那便有可能存在多个单例类的实例。假定不是远端存取,例如一些servlet容器对每个servlet使用完全不同的类装载器,这样的话如果有两个servlet访问一个单例类,它们就都会有各自的实例。

2.如果Singleton实现了java.io.Serializable接口,那么这个类的实例就可能被序列化和复原。不管怎样,如果你序列化一个单例类的对象,接下来复原多个那个对象,那你就会有多个单例类的实例。

对第一个问题修复的办法是: 

private static Class getClass(String classname)      
                                         throws ClassNotFoundException {     
      ClassLoader classLoader = Thread.currentThread().getContextClassLoader();     
      
      if(classLoader == null)     
         classLoader = Singleton.class.getClassLoader();     
      
      return (classLoader.loadClass(classname));     
   }     
}

对第二个问题修复的办法是:

public class Singleton implements java.io.Serializable {     
   public static Singleton INSTANCE = new Singleton();     
      
   protected Singleton() {     
        
   }     
   private Object readResolve() {     
            return INSTANCE;     
      }    
}    

3. 除了枚举类型外,其他的实现方式是可以被JAVA的反射机制给攻击的,即使他的构造方法是私有化的,我们也可以做一下处理,从外部得到它的实例。

把单例模式修改成不被反射攻击的形式,可以修改构造器,使得创建第二个实例的时候抛出异常。

import javax.management.RuntimeErrorException;

public class SingletonNotAttackByReflect{
    private static boolean flag = false;
    private static final SingletonNotAttackByReflect INSTANCE = new SingletonNotAttackByReflect();
    
    //保证其不被java反射攻击
    private SingletonNotAttackByReflect(){
        synchronized (SingletonNotAttackByReflect.class){
            if(false == flag){
                flag = !flag;
            }
            else{
                throw new RuntimeException("单例模式正在被攻击");
            }
            
        }
    }
    
    public static SingletonNotAttackByReflect getInstance(){
        return INSTANCE;
    }   
}
这样使用反射获取的时候:SingletonNotAttackByReflect singleton = (SingletonNotAttackByReflect) constructor.newInstance();就会抛出异常。


总结:总结,实现单例模式的唯一推荐方法,使用枚举类来实现,可以防止序列化和反射破坏单例模式。

https://www.cnblogs.com/ttylinux/p/6498822.html?utm_source=itdadao&utm_medium=referral

在用enum实现Singleton时有三个特性,自由序列化,线程安全,保证单例。这里我们就要探讨一下why的问题。

首先,我们都知道enum是由class实现的,换言之,enum可以实现很多class的内容,包括可以有member和member function,这也是我们可以用enum作为一个类来实现单例的基础。另外,由于enum是通过继承了Enum类实现的,enum结构不能够作为子类继承其他类,但是可以用来实现接口。此外,enum类也不能够被继承,在反编译中,我们会发现该类是final的。

其次,enum有且仅有private的构造器,防止外部的额外构造,这恰好和单例模式吻合,也为保证单例性做了一个铺垫。这里展开说下这个private构造器,如果我们不去手写构造器,则会有一个默认的空参构造器,我们也可以通过给枚举变量参量来实现类的初始化。

想要了解enum是如何工作的,就要对其进行反编译。

反编译后就会发现,使用枚举其实和使用静态类内部加载方法原理类似。枚举会被编译成如下形式:
public final class T extends Enum{
...
}

其中,Enum是Java提供给编译器的一个用于继承的类。枚举量的实现其实是public static final T 类型的未初始化变量,之后,会在静态代码中对枚举量进行初始化。所以,如果用枚举去实现一个单例,这样的加载时间其实有点类似于饿汉模式,并没有起到lazy-loading的作用。

对于序列化和反序列化,因为每一个枚举类型和枚举变量在JVM中都是唯一的,即Java在序列化和反序列化枚举时做了特殊的规定,枚举的writeObject、readObject、readObjectNoData、writeReplace和readResolve等方法是被编译器禁用的,因此也不存在实现序列化接口后调用readObject会破坏单例的问题。

对于线程安全方面,类似于普通的饿汉模式,通过在第一次调用时的静态初始化创建的对象是线程安全的。

因此,选择枚举作为Singleton的实现方式,相对于其他方式尤其是类似的饿汉模式主要有以下优点:
1. 代码简单
2. 自由序列化

至于lazy-loading,考虑到一般情况不存在调用单例类又不需要实例化单例的情况,所以即便不能做到很好的lazy-loading,也并不是大问题。换言之,除了枚举这种方案,饿汉模式也在单例设计中广泛的被应用。

========================================================================

出处:http://cantellow.iteye.com/blog/838473

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值