无题现代(一)

你看那路边,花开了又谢,

你看那云端,雷停了雨来。

我步履蹒跚,在泥泞中走来,

你泪眼朦胧,将秋水望穿。

蜂蝶飞了,落红还在。

雷雨停歇,彩虹才来。

泥泞里播下的理想的种,

秋水里斩不断情爱的根。

暖意初起,我将朝霞为你缝做红装,

梧桐叶落,你把秋意给我夹做书签。

斜阳之下执子手,梧桐林里听君语。

待晴日,有生之年,与你看遍万水千山。

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 无锡平芯微半导体科技有限公司生产的A1SHB三极管(全称PW2301A)是款P沟道增强型MOSFET,具备低内阻、高重复雪崩耐受能力以及高效电源切换设计等优势。其技术规格如下:最大漏源电压(VDS)为-20V,最大连续漏极电流(ID)为-3A,可在此条件下稳定工作;栅源电压(VGS)最大值为±12V,能承受正反向电压;脉冲漏极电流(IDM)可达-10A,适合处理短暂高电流脉冲;最大功率耗散(PD)为1W,可防止器件过热。A1SHB采用3引脚SOT23-3封装,小型化设计利于空间受限的应用场景。热特性方面,结到环境的热阻(RθJA)为125℃/W,即每增加1W功率损耗,结温上升125℃,提示设计电路时需考虑散热。 A1SHB的电气性能出色,开关特性优异。开关测试电路及波形图(图1、图2)展示了不同条件下的开关性能,包括开关上升时间(tr)、下降时间(tf)、开启时间(ton)和关闭时间(toff),这些参数对评估MOSFET在高频开关应用中的效率至关重要。图4呈现了漏极电流(ID)与漏源电压(VDS)的关系,图5描绘了输出特性曲线,反映不同栅源电压下漏极电流的变化。图6至图10进步揭示性能特征:转移特性(图7)显示栅极电压(Vgs)对漏极电流的影响;漏源开态电阻(RDS(ON))随Vgs变化的曲线(图8、图9)展现不同控制电压下的阻抗;图10可能涉及电容特性,对开关操作的响应速度和稳定性有重要影响。 A1SHB三极管(PW2301A)是高性能P沟道MOSFET,适用于低内阻、高效率电源切换及其他多种应用。用户在设计电路时,需充分考虑其电气参数、封装尺寸及热管理,以确保器件的可靠性和长期稳定性。无锡平芯微半导体科技有限公司提供的技术支持和代理商服务,可为用户在产品选型和应用过程中提供有
资源下载链接为: https://pan.quark.cn/s/9648a1f24758 在 JavaScript 中实现点击展开与隐藏效果是种非常实用的交互设计,它能够有效提升用户界面的动态性和用户体验。本文将详细阐述如何通过 JavaScript 实现这种功能,并提供个完整的代码示例。为了实现这功能,我们需要掌握基础的 HTML 和 CSS 知识,以便构建基本的页面结构和样式。 在这个示例中,我们有个按钮和个提示框(prompt)。默认情况下,提示框是隐藏的。当用户点击按钮时,提示框会显示出来;再次点击按钮时,提示框则会隐藏。以下是 HTML 部分的代码: 接下来是 CSS 部分。我们通过设置提示框的 display 属性为 none 来实现默认隐藏的效果: 最后,我们使用 JavaScript 来处理点击事件。我们利用事件监听机制,监听按钮的点击事件,并通过动态改变提示框的 display 属性来实现展开和隐藏的效果。以下是 JavaScript 部分的代码: 为了进步增强用户体验,我们还添加了个关闭按钮(closePrompt),用户可以通过点击该按钮来关闭提示框。以下是关闭按钮的 JavaScript 实现: 通过以上代码,我们就完成了点击展开隐藏效果的实现。这个简单的交互可以通过添加 CSS 动画效果(如渐显渐隐等)来进步提升用户体验。此外,这个基本原理还可以扩展到其他类似的交互场景,例如折叠面板、下拉菜单等。 总结来说,JavaScript 实现点击展开隐藏效果主要涉及 HTML 元素的布局、CSS 的样式控制以及 JavaScript 的事件处理。通过监听点击事件并动态改变元素的样式,可以实现丰富的交互功能。在实际开发中,可以结合现代前端框架(如 React 或 Vue 等),将这些交互封装成组件,从而提高代码的复用性和维护性。
OpenCV(Open Source Computer Vision Library)是个开源的计算机视觉和机器学习软件库,广泛应用于图像处理、计算机视觉和模式识别等领域。物体识别是OpenCV的个重要应用场景,以下是些常见的物体识别方法和技术: 1. **特征提取与匹配**: - **SIFT(尺度不变特征变换)**和**SURF(加速稳健特征)**:这些算法用于检测和描述局部特征,能够在图像中识别出相同的物体,即使它们的大小、旋转或光照条件发生变化。 - **ORB(定向快速旋转BRIEF)**:种快速的特征检测和描述算法,适用于实时应用。 2. **模板匹配**: - 通过在图像中滑动个模板(已知物体的图像),并计算模板与图像区域的相似度,来找到物体的位置。 3. **机器学习与深度学习**: - **支持向量机(SVM)**:用于分类和回归分析,可以用于物体识别任务。 - **卷积神经网络(CNN)**:深度学习模型,特别适合处理图像数据,能够自动学习图像的特征并进行分类。 4. **目标检测算法**: - **Haar级联分类器**:基于积分图和AdaBoost算法,用于实时人脸检测。 - **YOLO(You Only Look Once)**和**SSD(Single Shot MultiBox Detector)**:实时目标检测算法,能够在单次前向传播中同时进行目标定位和分类。 5. **实例分割**: - **Mask R-CNN**:在目标检测的基础上,进步分割出目标的精确轮廓。 OpenCV提供了丰富的API和工具,可以方便地实现上述方法。以下是个简单的示例代码,展示如何使用OpenCV进行模板匹配: ```python import cv2 import numpy as np # 读取原始图像和模板图像 original_image = cv2.imread('original_image.jpg') template = cv2.imread('template.jpg') template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY) w, h = template_gray.shape[::-1] # 转换为灰度图 gray_original = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) # 模板匹配 result = cv2.matchTemplate(gray_original, template_gray, cv2.TM_CCOEFF_NORMED) threshold = 0.8 loc = np.where(result >= threshold) # 绘制矩形框 for pt in zip(*loc[::-1]): cv2.rectangle(original_image, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2) # 显示结果 cv2.imshow('Detected', original_image) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值