【C++ 真题】P1873 [COCI 2011/2012 #5] EKO / 砍树

P1873 [COCI 2011/2012 #5] EKO / 砍树

题目描述

伐木工人 Mirko 需要砍 MMM 米长的木材。对 Mirko 来说这是很简单的工作,因为他有一个漂亮的新伐木机,可以如野火一般砍伐森林。不过,Mirko 只被允许砍伐一排树。

Mirko 的伐木机工作流程如下:Mirko 设置一个高度参数 HHH(米),伐木机升起一个巨大的锯片到高度 HHH,并锯掉所有树比 HHH 高的部分(当然,树木不高于 HHH 米的部分保持不变)。Mirko 就得到树木被锯下的部分。例如,如果一排树的高度分别为 20,15,1020,15,1020,15,10171717,Mirko 把锯片升到 151515 米的高度,切割后树木剩下的高度将是 15,15,1015,15,1015,15,10151515,而 Mirko 将从第 111 棵树得到 555 米,从第 44

### DeepSeek-R1 模型概述 DeepSeek-R1 是一种基于强化学习激励推理能力的大规模语言模型 (LLM)[^1]。该模型旨在通过改进现有技术来增强其在各种实际应用中的表现,特别是在智能客服、推荐算法优化、搜索引擎语义理解和实时数据分析等领域。 #### 工作原理详解 DeepSeek-R1 利用了组相对策略优化(GRPO)算法,这是一种用于提高模型泛化能力和稳定性的方法[^2]。GRPO 算法的核心在于动态调整训练过程中不同参数之间的关系,从而使得模型能够在面对新数据时做出更合理的预测。 此外,为了进一步提升计算效率并减少资源消耗,DeepSeekR1 还引入了 MoE 架构下的多头潜意识注意力机制(MLA)。这种设计允许模型根据不同类型的输入灵活调配内部组件的工作负载,在保持高性能的同时降低了整体能耗[^3]。 #### 技术特点 - **高效的任务分发**:采用类似于人类专家协作的方式,即对于每一个具体的任务请求,系统能够自动识别最适合处理它的子模块,并将任务传递过去执行;这不仅提高了响应速度也增强了准确性。 - **自适应的学习框架**:借助于 GRPO 方法论的支持,使整个网络具备更强的学习灵活性——可以快速适应变化的数据分布情况而不失稳定性。 ```python def grpo_algorithm(params, data): """ 实现了一个简化版的GRPO算法逻辑 参数: params -- 当前模型参数集 data -- 输入样本 返回值: updated_params -- 更新后的最优参数配置 """ # 计算梯度方向... return updated_params ``` #### 应用场景展示 得益于上述技术创新,DeepSeek-R1 展现出广泛的应用潜力: - 在医疗健康领域内实现精准诊断辅助; - 支持金融科技公司开发更加个性化的理财产品建议服务; - 协助科研人员加速复杂课题的研究进展等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QuantumStack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值