Unique Binary Search Trees II

本文探讨了生成所有可能的不同结构的二叉搜索树的方法。提出了两种递归策略:一种是通过遍历并替换节点;另一种是通过控制根节点,递归生成左右子树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.

For example,
Given n = 3, your program should return all 5 unique BST's shown below.

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3


思路:
    1.能想到递归,只不过做的时候是采用向下递归,每次找到n-1的所有树序列,对于每棵树进行遍历,通过找节点的所有右节点,并每次将其替换成当前值为n的节点,以被替换节点为根的子树被作为值为n的节点的左孩子,因此此时树仍然是BST
    缺陷:由于每次遍历,都需要修改树的形状,然后在将该树存至结果,因此必须保存有当前的树,然后由于指针会改变树的形状,因此只有重新递归找到n-1的树集合,定位到上一次修改的树,同时还需记录修改到树的哪一节点,因此开销会增加,而且似乎实现起来比较麻烦。。。但可以确定,此方法可以生成BST

    2.还是递归,不过此时是通过控制根节点,左右孩子通过遍历得到(从网上得到的思路,感觉很赞),此时只需要将根节点的左右指针分别对应上左右子树即可,很容易实现,以及思路很巧妙

### 如何使用二叉搜索树(BST)实现 A+B 操作 在 C 编程语言中,可以通过构建两个二叉搜索树(BST),分别表示集合 A 和 B 的元素,然后通过遍历其中一个 BST 并将其节点插入到另一个 BST 中来完成 A+B 操作。以下是详细的实现方法: #### 数据结构定义 首先需要定义一个简单的二叉搜索树节点的数据结构。 ```c typedef struct TreeNode { int value; struct TreeNode* left; struct TreeNode* right; } TreeNode; ``` #### 插入函数 为了向 BST 添加新元素,可以编写如下 `insert` 函数。 ```c TreeNode* createNode(int value) { TreeNode* newNode = (TreeNode*)malloc(sizeof(TreeNode)); newNode->value = value; newNode->left = NULL; newNode->right = NULL; return newNode; } void insert(TreeNode** root, int value) { if (*root == NULL) { *root = createNode(value); } else { if (value < (*root)->value) { insert(&((*root)->left), value); // Insert into the left subtree. } else if (value > (*root)->value) { insert(&((*root)->right), value); // Insert into the right subtree. } // If value == (*root)->value, do nothing since duplicates are not allowed in a set. } } ``` #### 合并操作 要执行 A+B 操作,即合并两棵 BST,可以从一棵树中提取所有元素并将它们逐个插入另一棵树中。 ```c // In-order traversal to extract elements from one tree and add them to another. void mergeTrees(TreeNode* sourceRoot, TreeNode** targetRoot) { if (sourceRoot != NULL) { mergeTrees(sourceRoot->left, targetRoot); // Traverse left subtree first. insert(targetRoot, sourceRoot->value); // Add current node's value to target tree. mergeTrees(sourceRoot->right, targetRoot); // Then traverse right subtree. } } ``` #### 主程序逻辑 假设我们已经初始化了两棵 BST 表示集合 A 和 B,则可以通过调用上述函数完成 A+B 操作。 ```c int main() { TreeNode* treeA = NULL; TreeNode* treeB = NULL; // Example: Adding values to Tree A. int arrayA[] = {5, 3, 7, 2, 4}; for (size_t i = 0; i < sizeof(arrayA)/sizeof(arrayA[0]); ++i) { insert(&treeA, arrayA[i]); } // Example: Adding values to Tree B. int arrayB[] = {6, 8, 1}; for (size_t i = 0; i < sizeof(arrayB)/sizeof(arrayB[0]); ++i) { insert(&treeB, arrayB[i]); } // Perform A + B by merging all nodes of treeB into treeA. mergeTrees(treeB, &treeA); // Now treeA contains all unique elements from both sets. return 0; } ``` 此代码片段展示了如何利用二叉搜索树的性质高效地进行集合并集运算[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值