Train your own model using YuYi QianWen (语义千问)

To train your own model using YuYi QianWen (语义千问) or similar open-source models, follow these steps:

1. Understand Your Objective

  • Define the specific task: e.g., Q&A, text classification, summarization, or translation.
  • Prepare a dataset tailored to your goal. This could involve collecting questions, answers, or other relevant data.

2. Prepare the Environment

Install necessary dependencies:

  • Python (preferably Python 3.8+)
  • PyTorch or TensorFlow (depending on the model backend)
  • Hugging Face Transformers library or another framework suitable for fine-tuning

Example:

pip install torch transformers datasets


3. Obtain the YuYi QianWen Model

  • Locate the model on platforms like Hugging Face or the official release site.
  • Download the pretrained weights or model checkpoint.

Example for Hugging Face:

from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "yuYi-QianWen/model-name" # Replace with actual model name model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)


4. Prepare Your Dataset

  • Format your dataset as JSON, CSV, or other supported formats.
  • For Q&A, the dataset might look like:
     

    [ {"question": "What is AI?", "answer": "Artificial Intelligence is..."}, {"question": "Define machine learning.", "answer": "Machine learning is..."} ]

  • Use tools like Hugging Face's datasets to load and preprocess your data.

Example:

 

from datasets import load_dataset dataset = load_dataset("path/to/your/dataset.json")


5. Fine-Tune the Model

Use Hugging Face's Trainer API or a custom training loop to fine-tune the model.

Example with Trainer:

 

from transformers import Trainer, TrainingArguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=8, num_train_epochs=3, save_steps=10_000, save_total_limit=2, ) trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["test"], tokenizer=tokenizer, ) trainer.train()

If the dataset is too large, consider gradient accumulation or using a smaller batch size.


6. Evaluate the Model

  • Use a validation or test dataset to evaluate the model.
  • Define metrics like accuracy, BLEU, ROUGE, or F1 based on the task.

Example:

 

metrics = trainer.evaluate() print(metrics)


7. Deploy Your Model

  • Save the fine-tuned model:
     

    model.save_pretrained("./fine_tuned_model") tokenizer.save_pretrained("./fine_tuned_model")

  • Use APIs like FastAPI or Flask for deployment.

Example:

 

pip install fastapi uvicorn

Create an API:

 

from fastapi import FastAPI from transformers import AutoModelForCausalLM, AutoTokenizer app = FastAPI() model = AutoModelForCausalLM.from_pretrained("./fine_tuned_model") tokenizer = AutoTokenizer.from_pretrained("./fine_tuned_model") @app.post("/predict/") async def predict(question: str): inputs = tokenizer(question, return_tensors="pt") outputs = model.generate(inputs["input_ids"], max_length=50) return {"answer": tokenizer.decode(outputs[0])}

Run the API:

 

uvicorn main:app --reload


8. Optimize and Iterate

  • Monitor performance in production.
  • Collect user feedback and improve the dataset.
  • Retrain or fine-tune periodically to handle edge cases.

By following this workflow, you can train and deploy a custom model using YuYi QianWen or similar open-source models.

(Mathcad+Simulink仿真)基于扩展描述函数法的LLC谐振变换器小信号分析设计内容概要:本文围绕“基于扩展描述函数法的LLC谐振变换器小信号分析设计”展开,结合Mathcad与Simulink仿真工具,系统研究LLC谐振变换器的小信号建模方法。重点利用扩展描述函数法(Extended Describing Function Method, EDF)对LLC变换器在非线性工作条件下的动态特性进行线性化近似,建立适用于频域分析的小信号模型,并通过Simulink仿真验证模型准确性。文中详细阐述了建模理论推导过程,包括谐振腔参数计算、开关网络等效处理、工作模态分析及频响特性提取,最后通过仿真对比验证了该方法在稳定性分析与控制器设计中的有效性。; 适合人群:具备电力电子、自动控制理论基础,熟悉Matlab/Simulink和Mathcad工具,从事开关电源、DC-DC变换器或新能源变换系统研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握LLC谐振变换器的小信号建模难点与解决方案;②学习扩展描述函数法在非线性系统线性化中的应用;③实现高频LLC变换器的环路补偿与稳定性设计;④结合Mathcad进行公式推导与参数计算,利用Simulink完成动态仿真验证。; 阅读建议:建议读者结合Mathcad中的数学推导与Simulink仿真模型同步学习,重点关注EDF法的假设条件与适用范围,动手复现建模步骤和频域分析过程,以深入理解LLC变换器的小信号行为及其在实际控制系统设计中的应用。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值