Python中的super

本文通过实例详细解析了Python中使用super()方法时的调用顺序变化,包括不同初始化方法顺序对类继承结构的影响。

I had played a bit with super(), and had recognized that we can change calling order.

For example, we have next hierarchy structure:

     A
   / \
  B   C
   \ /
    D

In this case MRO of D will be (only for Python 3):

In [26]: D.__mro__

Out[26]: (__main__.D, __main__.B, __main__.C, __main__.A, object)

 Let's create a class where 

In [23]: class A(object): #  or with Python 3 can define class A:
...:     def __init__(self):
...:         print("I'm from A")
...:  
...: class B(A):
...:      def __init__(self):
...:          print("I'm from B")
...:          super().__init__()
...:   
...: class C(A):
...:      def __init__(self):
...:          print("I'm from C")
...:          super().__init__()
...:  
...: class D(B, C):
...:      def __init__(self):
...:          print("I'm from D")
...:          super().__init__()
...: d = D()
...:
I'm from D
I'm from B
I'm from C
I'm from A


    A
   / ⇖
  B ⇒ C
   ⇖ /
    D

So we can see that resolution order is same as in MRO. But when we call super() in the beginning of the method:

 In [21]: class A(object):  # or class A:
...:     def __init__(self):
...:         print("I'm from A")
...:  
...: class B(A):
...:      def __init__(self):
...:          super().__init__()  # or super(B, self).__init_()
...:          print("I'm from B")
...:   
...: class C(A):
...:      def __init__(self):
...:          super().__init__()
...:          print("I'm from C")
...:  
...: class D(B, C):
...:      def __init__(self):
...:          super().__init__()
...:          print("I'm from D")
...: d = D()
...: 
I'm from A
I'm from C
I'm from B
I'm from D

We have a different order it is reversed a order of the MRO tuple.


    A
   / ⇘
  B ⇐ C
   ⇘ /
    D 

演示了为无线无人机电池充电设计的感应电力传输(IPT)系统 Dynamic Wireless Charging for (UAV) using Inductive Coupling 模拟了为无人机(UAV)量身定制的无线电力传输(WPT)系统。该模型演示了直流电到高频交流电的转换,通过磁共振在气隙中无线传输能量,以及整流回直流电用于电池充电。 系统拓扑包括: 输入级:使用IGBT/二极管开关连接到全桥逆变器的直流电压源(12V)。 开关控制:脉冲发生器以85 kHz(周期:1/85000秒)的开关频率运行,这是SAE J2954无线充电标准的标准频率。 耦合级:使用互感和线性变压器块来模拟具有特定耦合系数的发射(Tx)和接收(Rx)线圈。 补偿:包括串联RLC分支,用于模拟谐振补偿网络(将线圈调谐到谐振频率)。 输出级:桥式整流器(基于二极管),用于将高频交流电转换回直流电,以供负载使用。 仪器:使用示波器块进行全面的电压和电流测量,用于分析输入/输出波形和效率。 模拟详细信息: 求解器:离散Tustin/向后Euler(通过powergui)。 采样时间:50e-6秒。 4.主要特点 高频逆变:模拟85 kHz下IGBT的开关瞬态。 磁耦合:模拟无人机着陆垫和机载接收器之间的松耦合行为。 Power GUI集成:用于专用电力系统离散仿真的设置。 波形分析:预配置的范围,用于查看逆变器输出电压、初级/次级电流和整流直流电压。 5.安装与使用 确保您已安装MATLAB和Simulink。 所需工具箱:必须安装Simscape Electrical(以前称为SimPowerSystems)工具箱才能运行sps_lib块。 打开文件并运行模拟。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值