1986 Distance Queries //LCA

本文介绍了一种用于解决无向图中两点间最短路径查询问题的算法实现。该算法能够高效地处理大量预设的路径查询请求,并通过并查集和离线查询策略实现了快速响应。适用于需要频繁进行距离计算的应用场景。
Distance Queries
Time Limit: 2000MS Memory Limit: 30000K
Total Submissions: 3708 Accepted: 1315
Case Time Limit: 1000MS

Description

Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible!

Input

* Lines 1..1+M: Same format as "Navigation Nightmare"

* Line 2+M: A single integer, K. 1 <= K <= 10,000

* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.

Output

* Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance.

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6

Sample Output

13
3
36

Hint

Farms 2 and 6 are 20+3+13=36 apart.

Source

 

 

#include<stdio.h>//无向图,不知道根,离线查找两点间的距离,邻接表LCA
#include<string.h>
const int MAX=40005;
struct node
{
    int dis,first;
}point[MAX];
struct road
{
    int next,to,dis;
}rd[MAX*2],que[MAX*2];

int p[MAX],link[MAX],res[MAX];
bool vis[MAX];

void init(int n)//并查集
{
    for(int i=0;i<=n;i++)
    {
        p[i]=i;
        link[i]=-1;
        point[i].first=-1;
        res[i]=0;
        vis[i]=false;
    }
}
int find(int x)
{
    if(x!=p[x]) p[x]=find(p[x]);
    return p[x];
}
int Union(int a,int b)
{
    a=find(a);
    b=find(b);
    p[b]=a;
    return a;
}

void insertR(int from,int to,int len,int& n)
{
    rd[n].to=to;
    rd[n].dis=len;
    rd[n].next=point[from].first;
    point[from].first=n++;
}
void insertQ(int from,int to,int index,int& n)
{
    que[n].to=to;
 que[n].dis=index;
 que[n].next=link[from];
 link[from]=n++;
}

void lca(int pos,int dis)
{
    int p;
    point[pos].dis=dis;
    vis[pos]=true;
    for(int i=point[pos].first;i!=-1;i=rd[i].next)
    {
        if(!vis[rd[i].to])
        {
            lca(rd[i].to,dis+rd[i].dis);
            Union(pos,rd[i].to);
        }
    }
    for(int i=link[pos];i!=-1;i=que[i].next)
    {
        if(vis[que[i].to])
        {
            p=find(que[i].to);
            res[que[i].dis]=dis+point[que[i].to].dis-2*point[p].dis;//que[i].dis表示的是询问的序号
        }
    }
}

int main()
{
    int n,m,from,to,len,rn,qn,k;
    char c;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        rn=0,qn=0;
        init(n);//如果是多组数据,那么初始化要注意
        for(int i=0;i<m;i++)
        {
           scanf("%d %d %d %c",&from,&to,&len,&c);
           insertR(from,to,len,rn);//无向图
           insertR(to,from,len,rn);
        }
        scanf("%d",&k);
        for(int i=0;i<k;i++)
        {
            scanf("%d %d",&from,&to);
            insertQ(from,to,i,qn);
            insertQ(to,from,i,qn);
        }
        vis[1]=true;//假设一为根,如果是多组数组,注意数组的初始化
        lca(1,0);
        for(int i=0;i<k;i++) printf("%d/n",res[i]);
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值