Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 2560 | Accepted: 1207 |
Description

Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?
Input
Output
Sample Input
2 7 9 ooo**oooo **oo*ooo* o*oo**o** ooooooooo *******oo o*o*oo*oo *******oo 10 1 * * * o * * * * * *
Sample Output
17 5
Source
求解出所需的最少边数,使得每个点都被覆盖到,即为求解最小路径覆盖,而最小路径覆盖=顶点数V-最大独立集=顶点数V-最大匹配.
注意除以2!!!大量重复计算!
#include<stdio.h>
#include<string.h>
char str[41][11];
bool mat[400][400],usedif[400];
int h,w,link[400],num;
int dx[4]={0,0,-1,1};
int dy[4]={1,-1,0,0};
bool can(int t)
{
for(int i=0;i<w*h;i++)
if(usedif[i]==0&&mat[t][i]==1)
{
usedif[i]=1;
if(link[i]==-1||can(link[i]))
{
link[i]=t;
return true;
}
}
return false;
}
int MaxMatch()
{
int sum=0;
memset(link,-1,sizeof(link));
for(int i=0;i<h*w;i++)
{
memset(usedif,false,sizeof(usedif));
if(can(i)) sum++;
}
return sum;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
num=0;
scanf("%d%d",&h,&w);
memset(mat,false,sizeof(mat));
for(int i=0;i<h;i++) scanf("%s",str[i]);
for(int i=0;i<h;i++)
for(int j=0;j<w;j++)
if(str[i][j]=='*')
{
num++;
for(int k=0;k<4;k++)
{
int x,y;
x=i+dx[k];
y=j+dy[k];
if(x>=0&&x<h&&y>=0&&y<w&&str[x][y]=='*') mat[i*w+j][x*w+y]=true;
}
}
printf("%d/n",num-MaxMatch()/2);
}
return 0;
}