| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 2134 | Accepted: 730 |
Description
FJ would like to rearrange the cows such that the cows are as equally happy as possible, even if that means all the cows hate their assigned barn.
Each cow gives FJ the order in which she prefers the barns. A cow's happiness with a particular assignment is her ranking of her barn. Your job is to find an assignment of cows to barns such that no barn's capacity is exceeded and the size of the range (i.e., one more than the positive difference between the the highest-ranked barn chosen and that lowest-ranked barn chosen) of barn rankings the cows give their assigned barns is as small as possible.
Input
Lines 2..N+1: Each line contains B space-separated integers which are exactly 1..B sorted into some order. The first integer on line i+1 is the number of the cow i's top-choice barn, the second integer on that line is the number of the i'th cow's second-choice barn, and so on.
Line N+2: B space-separated integers, respectively the capacity of the first barn, then the capacity of the second, and so on. The sum of these numbers is guaranteed to be at least N.
Output
Sample Input
6 4 1 2 3 4 2 3 1 4 4 2 3 1 3 1 2 4 1 3 4 2 1 4 2 3 2 1 3 2
Sample Output
2
Hint
Each cow can be assigned to her first or second choice: barn 1 gets cows 1 and 5, barn 2 gets cow 2, barn 3 gets cow 4, and barn 4 gets cows 3 and 6.
Source
还是二分图的多重匹配
因为喜爱值在区间[1,b],所以可以枚举该差值,设最小喜爱值为low,最大喜爱值为high,初始时low=high=1,如果喜爱值在[low,high]的范围内可以将这n头牛以满足题意的方式安排好,那么就增大low值以用来减小差值,而如果没有安排方案,那么就增大high值来寻找新的安排方案.
#include<cstdio>
#include<string.h>
int mat[1010][25];
int c[25];
bool usedif[25];
int link[25][1010];
int n,b,low,high;
bool can(int t)
{
for(int i=1;i<=b;i++)
if(usedif[i]==0&&mat[t][i]<=high&&mat[t][i]>=low)
{
usedif[i]=true;
if(link[i][0]<c[i])
{
link[i][++link[i][0]]=t;
return true;
}
else
{
for(int j=1;j<=link[i][0];j++)
if(can(link[i][j]))
{
link[i][j]=t;
return true;
}
}
}
return false;
}
bool check()
{
for(int i=1;i<=b;i++) link[i][0]=0;
for(int i=1;i<=n;i++)
{
memset(usedif,0,sizeof(usedif));
if(!can(i)) return false;
}
return true;
}
int solve()
{
low=high=1;
int ans=1<<25-1;
while(low<=high&&high<=b)
{
if(check())
{
if(high-low+1<ans) ans=high-low+1;
low++;
}
else
high++;
}
return ans;
}
int main()
{
while(scanf("%d%d",&n,&b)!=EOF)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=b;j++)
{
int t;
scanf("%d",&t);
mat[i][t]=j;
}
for(int i=1;i<=b;i++) scanf("%d",&c[i]);
printf("%d/n",solve());
}
return 0;
}
本篇介绍了一种算法解决奶牛与谷仓的分配问题,目标是最小化奶牛对其分配谷仓满意度范围的差距,同时确保每个谷仓不超过容量限制。采用二分图匹配算法,并通过调整奶牛满意度的高低范围实现最优解。
567

被折叠的 条评论
为什么被折叠?



