3189 Steady Cow Assignment //MaxMatch

本篇介绍了一种算法解决奶牛与谷仓的分配问题,目标是最小化奶牛对其分配谷仓满意度范围的差距,同时确保每个谷仓不超过容量限制。采用二分图匹配算法,并通过调整奶牛满意度的高低范围实现最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Steady Cow Assignment
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 2134 Accepted: 730

Description

Farmer John's N (1 <= N <= 1000) cows each reside in one of B (1 <= B <= 20) barns which, of course, have limited capacity. Some cows really like their current barn, and some are not so happy.  

FJ would like to rearrange the cows such that the cows are as equally happy as possible, even if that means all the cows hate their assigned barn.  

Each cow gives FJ the order in which she prefers the barns. A cow's happiness with a particular assignment is her ranking of her barn. Your job is to find an assignment of cows to barns such that no barn's capacity is exceeded and the size of the range (i.e., one more than the positive difference between the the highest-ranked barn chosen and that lowest-ranked barn chosen) of barn rankings the cows give their assigned barns is as small as possible.

Input

Line 1: Two space-separated integers, N and B  

Lines 2..N+1: Each line contains B space-separated integers which are exactly 1..B sorted into some order. The first integer on line i+1 is the number of the cow i's top-choice barn, the second integer on that line is the number of the i'th cow's second-choice barn, and so on.  

Line N+2: B space-separated integers, respectively the capacity of the first barn, then the capacity of the second, and so on. The sum of these numbers is guaranteed to be at least N.

Output

Line 1: One integer, the size of the minumum range of barn rankings the cows give their assigned barns, including the endpoints.

Sample Input

6 4
1 2 3 4
2 3 1 4
4 2 3 1
3 1 2 4
1 3 4 2
1 4 2 3
2 1 3 2

Sample Output

2

Hint

Explanation of the sample:  

Each cow can be assigned to her first or second choice: barn 1 gets cows 1 and 5, barn 2 gets cow 2, barn 3 gets cow 4, and barn 4 gets cows 3 and 6.

Source

还是二分图的多重匹配

因为喜爱值在区间[1,b],所以可以枚举该差值,设最小喜爱值为low,最大喜爱值为high,初始时low=high=1,如果喜爱值在[low,high]的范围内可以将这n头牛以满足题意的方式安排好,那么就增大low值以用来减小差值,而如果没有安排方案,那么就增大high值来寻找新的安排方案.

 

#include<cstdio>
#include<string.h>
int mat[1010][25];
int c[25];
bool usedif[25];
int link[25][1010];
int n,b,low,high;
bool can(int t)
{
    for(int i=1;i<=b;i++)
    if(usedif[i]==0&&mat[t][i]<=high&&mat[t][i]>=low)
    {
        usedif[i]=true;
        if(link[i][0]<c[i])
        {
            link[i][++link[i][0]]=t;
            return true;
        }
        else
        {
            for(int j=1;j<=link[i][0];j++)
            if(can(link[i][j]))
            {
                link[i][j]=t;
                return true;
            }
        }
    }
    return false;
}
bool check()
{
    for(int i=1;i<=b;i++)  link[i][0]=0;
    for(int i=1;i<=n;i++)
    {
        memset(usedif,0,sizeof(usedif));
        if(!can(i))  return false;
    }
    return true;
}
int solve()
{
    low=high=1;
    int ans=1<<25-1;
    while(low<=high&&high<=b)
    {
        if(check())
        {
            if(high-low+1<ans)  ans=high-low+1;
            low++;
        }
        else
        high++;
    }
    return ans;
}
int main()
{
    while(scanf("%d%d",&n,&b)!=EOF)
    {
        for(int i=1;i<=n;i++)
          for(int j=1;j<=b;j++)
          {
              int t;
              scanf("%d",&t);
              mat[i][t]=j;
          }
        for(int i=1;i<=b;i++) scanf("%d",&c[i]);
        printf("%d/n",solve());
    }
    return 0;
}

资源下载链接为: https://pan.quark.cn/s/3d8e22c21839 随着 Web UI 框架(如 EasyUI、JqueryUI、Ext、DWZ 等)的不断发展与成熟,系统界面的统一化设计逐渐成为可能,同时代码生成器也能够生成符合统一规范的界面。在这种背景下,“代码生成 + 手工合并”的半智能开发模式正逐渐成为新的开发趋势。通过代码生成器,单表数据模型以及一对多数据模型的增删改查功能可以被直接生成并投入使用,这能够有效节省大约 80% 的开发工作量,从而显著提升开发效率。 JEECG(J2EE Code Generation)是一款基于代码生成器的智能开发平台。它引领了一种全新的开发模式,即从在线编码(Online Coding)到代码生成器生成代码,再到手工合并(Merge)的智能开发流程。该平台能够帮助开发者解决 Java 项目中大约 90% 的重复性工作,让开发者可以将更多的精力集中在业务逻辑的实现上。它不仅能够快速提高开发效率,帮助公司节省大量的人力成本,同时也保持了开发的灵活性。 JEECG 的核心宗旨是:对于简单的功能,可以通过在线编码配置来实现;对于复杂的功能,则利用代码生成器生成代码后,再进行手工合并;对于复杂的流程业务,采用表单自定义的方式进行处理,而业务流程则通过工作流来实现,并且可以扩展出任务接口,供开发者编写具体的业务逻辑。通过这种方式,JEECG 实现了流程任务节点和任务接口的灵活配置,既保证了开发的高效性,又兼顾了项目的灵活性和可扩展性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值