POJ 1080 Human Gene Functions

本文介绍了一种用于比较两个基因序列相似性的算法。通过插入空格使两序列等长并根据打分矩阵计算匹配得分,以此衡量相似度。示例展示了如何通过不同排列找到最优比对,以实现生物信息学研究中基因功能预测。

1050: Human Gene Functions -------------------------------------------------------------------------------- Result TIME Limit MEMORY Limit Run Times AC Times JUDGE 3s 8192K 378 217 Standard It is well known that a human gene can be considered as a sequence, consisting of four nucleotides, which are simply denoted by four letters, A, C, G, and T. Biologists have been interested in identifying human genes and determining their functions, because these can be used to diagnose human diseases and to design new drugs for them. A human gene can be identified through a series of time-consuming biological experiments, often with the help of computer programs. Once a sequence of a gene is obtained, the next job is to determine its function. One of the methods for biologists to use in determining the function of a new gene sequence that they have just identified is to search a database with the new gene as a query. The database to be searched stores many gene sequences and their functions – many researchers have been submitting their genes and functions to the database and the database is freely accessible through the Internet. A database search will return a list of gene sequences from the database that are similar to the query gene. Biologists assume that sequence similarity often implies functional similarity. So, the function of the new gene might be one of the functions that the genes from the list have. To exactly determine which one is the right one another series of biological experiments will be needed. Your job is to make a program that compares two genes and determines their similarity as explained below. Your program may be used as a part of the database search if you can provide an efficient one. Given two genes AGTGATG and GTTAG, how similar are they? One of the methods to measure the similarity of two genes is called alignment. In an alignment, spaces are inserted, if necessary, in appropriate positions of the genes to make them equally long and score the resulting genes according to a scoring matrix. For example, one space is inserted into AGTGATG to result in AGTGAT-G, and three spaces are inserted into GTTAG to result in –GT--TAG. A space is denoted by a minus sign (-). The two genes are now of equal length. These two strings are aligned: AGTGAT-G -GT--TAG In this alignment, there are four matches, namely, G in the second position, T in the third, T in the sixth, and G in the eighth. Each pair of aligned characters is assigned a score according to the following scoring matrix. * denotes that a space-space match is not allowed. The score of the alignment above is (-3)+5+5+(-2)+(-3)+5+(-3)+5=9. Of course, many other alignments are possible. One is shown below (a different number of spaces are inserted into different positions): AGTGATG -GTTA-G This alignment gives a score of (-3)+5+5+(-2)+5+(-1) +5=14. So, this one is better than the previous one. As a matter of fact, this one is optimal since no other alignment can have a higher score. So, it is said that the similarity of the two genes is 14. Input The input consists of T test cases. The number of test cases ) (T is given in the first line of the input. Each test case consists of two lines: each line contains an integer, the length of a gene, followed by a gene sequence. The length of each gene sequence is at least one and does not exceed 100. Output The output should print the similarity of each test case, one per line. Sample Input 2 7 AGTGATG 5 GTTAG 7 AGCTATT 9 AGCTTTAAA Sample Output 14 21 -------------------------------------------------------------------------------- This problem is used for contest: 36 148 ------------------

-------------------------------------------------------------- Submit / Problem List / Status / Discuss

        //由于S1序列的第I个没有匹配,所以在S1序列的前I个,
                      //和S2序列的前J个匹配中,他只能和-匹配了
        //a[i][j]是说S1序列的前I个,和S2序列的前J个匹配所得到的最大值

#include #include

int a[101][101];

int table[5][5]=

{ 5,-1,-2,-1,-3,

-1,5,-3,-2,-4, -2,-

3,5,-2,-2, -1,

-2,-2,5,-1, -3,

-4,-2,-1,0 }; int t(char ch) { if(ch=='A') return 0; if(ch=='C') return 1; if(ch=='G') return 2; if(ch=='T') return 3; return 4; } int max(int a,int b,int c) { int x=-1000000; if(a>x) x=a; if(b>x) x=b; if(c>x) x=c; return x; } int main() { int T; while(scanf("%d",&T)!=EOF) { while(T--) { memset(a,0,sizeof(a)); char s1[101],s2[101]; int l1,l2; scanf("%d%s",&l1,s1); scanf("%d%s",&l2,s2); a[0][0]=0; /*a[1][0]=a[1][0]+table[t(s1[1])][t('-')]; a[0][1]=a[0][1]+table[t('-')][t(s2[1])]; a[1][1]=a[0][0]+table[t(s1[0])][t(s2[0])];*/ for(int i=1;i<=l1;i++) a[i][0]=a[i-1][0]+table[t(s1[i-1])][4]; for(int i=1;i<=l2;i++) a[0][i]=a[0][i-1]+table[4][t(s2[i-1])]; for(int i=1;i<=l1;i++) for(int j=1;j<=l2;j++) a[i][j]=max(a[i-1][j-1]+table[t(s1[i-1])][t(s2[j-1])], a[i-1][j]+table[t(s1[i-1])][4], a[i][j-1]+table[4][t(s2[j-1])]); printf("%d/n",a[l1][l2]); } } return 0; }

【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器模拟器的研究展开,重点介绍基于Matlab代码实现的四轴飞行器动力学建模与仿真方法。研究构建了考虑非线性特性的飞行器数学模型,涵盖姿态动力学与运动学方程,实现了三自由度(滚转、俯仰、偏航)的精确模拟。文中详细阐述了系统建模过程、控制算法设计思路及仿真结果分析,帮助读者深入理解四轴飞行器的飞行动力学特性与控制机制;同时,该模拟器可用于算法验证、控制器设计与教学实验。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及无人机相关领域的工程技术人员,尤其适合从事飞行器建模、控制算法开发的研究生和初级研究人员。; 使用场景及目标:①用于四轴飞行器非线性动力学特性的学习与仿真验证;②作为控制器(如PID、LQR、MPC等)设计与测试的仿真平台;③支持无人机控制系统教学与科研项目开发,提升对姿态控制与系统仿真的理解。; 阅读建议:建议读者结合Matlab代码逐模块分析,重点关注动力学方程的推导与实现方式,动手运行并调试仿真程序,以加深对飞行器姿态控制过程的理解。同时可扩展为六自由度模型或加入外部干扰以增强仿真真实性。
基于分布式模型预测控制DMPC的多智能体点对点过渡轨迹生成研究(Matlab代码实现)内容概要:本文围绕“基于分布式模型预测控制(DMPC)的多智能体点对点过渡轨迹生成研究”展开,重点介绍如何利用DMPC方法实现多智能体系统在复杂环境下的协同轨迹规划与控制。文中结合Matlab代码实现,详细阐述了DMPC的基本原理、数学建模过程以及在多智能体系统中的具体应用,涵盖点对点转移、避障处理、状态约束与通信拓扑等关键技术环节。研究强调算法的分布式特性,提升系统的可扩展性与鲁棒性,适用于多无人机、无人车编队等场景。同时,文档列举了大量相关科研方向与代码资源,展示了DMPC在路径规划、协同控制、电力系统、信号处理等多领域的广泛应用。; 适合人群:具备一定自动化、控制理论或机器人学基础的研究生、科研人员及从事智能系统开发的工程技术人员;熟悉Matlab/Simulink仿真环境,对多智能体协同控制、优化算法有一定兴趣或研究需求的人员。; 使用场景及目标:①用于多智能体系统的轨迹生成与协同控制研究,如无人机集群、无人驾驶车队等;②作为DMPC算法学习与仿真实践的参考资料,帮助理解分布式优化与模型预测控制的结合机制;③支撑科研论文复现、毕业设计或项目开发中的算法验证与性能对比。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注DMPC的优化建模、约束处理与信息交互机制;按文档结构逐步学习,同时参考文中提及的路径规划、协同控制等相关案例,加深对分布式控制系统的整体理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值