这是标准的数学题。求N!的非零末位。
这也是标准的BT题,光是N就可以到100位。完全没有直接做的办法。还是看LeeMars的报告吧!
首先考虑某一个N!(N < 10),我们先将所有5的倍数提出来,用1代替原来5的倍数的位置。由于5的倍数全被提走了,所以这样就不会出现尾数0了。我们先把0..9的阶乘的尾数列出来(注意,5的倍数的位置上是1),可以得到table[0..9] = (1, 1, 2, 6, 4, 4, 4, 8, 4, 6)。对于N < 5,直接输出table[N]即可;对于N > = 5,由于提出了一个5,因此需要一个2与之配成10,即将尾数除以2。注意到除了0 !和1!,阶乘的最后一个非零数字必为偶数(显然,因为在N!的质因数里2的个数要多),所以有一个很特别的除法规律:2 / 2 = 6,4 / 2 = 2,6 / 2 = 8,8 / 2 = 4。比较特殊的就是2 / 2 = 12 / 2 = 6, 6 / 2 = 16 / 2 = 8。这样我们就可以得到如下式子:
代码:
table[N] F(N) = ------------ (0 <= N < 10) 2^([N/5])
再考虑复杂的。考虑某一个N!(N >= 10),我们先将所有5的倍数提出来,用1代替原来5的倍数的位置。由于5的倍数全被提走了,所以这样就不会出现尾数0了。我们观察一下剩下的数的乘积的尾数,通过table表,我们发现这10个数的乘积的尾数是6,6 * 6的尾数还是6,因此我们将剩下的数每10个分成一组,则剩下的数的乘积的尾数只与最后一组的情况有关,即与N的最后一位数字有关。由于我们把5的倍数提出来了,N!中一次可以提出[N/5]个5的倍数,有多少个5,就需要有多少个2与之配成10,所以有多少个5,最后就要除以多少个2。注意到除2的结果变化是4个一循环,因此如果有A个5,只需要除(A MOD 4)次2就可以了。A MOD 4只与A的最后两位数有关,很好求算。剩下的5的倍数,由于5已经全部处理掉了,就变成[N/5]!。于是,我们可以得到一个递归关系:
代码:
F([N/5]) * table[N的尾数] * 6 F(N) = ---------------------------------------- (N > 10) 2^([N/5] MOD 4)
这样我们就得到了一个O(log5(N))的算法,整除5可以用高精度加法做,乘2再除10即
可。整个算法相当巧妙,写起来也比较轻松。
想了好半天,看了好半天,写了好半天.......
#include<stdio.h>
int main()
{
int i;
int n;
while(scanf("%d",&n)==1)
{
printf("%5d -> ",n);
if(n==0||n==1)
{
printf("1/n");
continue;
}
int temp=1;
for(i=2;i<=n;i++)
{
int b=i;
while(b%10==0)
b/=10;
while(b%5==0)
{
b/=5;
temp/=2;
}
temp*=b;
temp%=100000;
}
printf("%d/n",temp%10);
}
return 0;
}