You are given an array a1, a2, ..., an consisting of n integers, and an integer k. You have to split the array into exactly k non-empty subsegments. You'll then compute the minimum integer on each subsegment, and take the maximum integer over the k obtained minimums. What is the maximum possible integer you can get?
Definitions of subsegment and array splitting are given in notes.
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 105) — the size of the array a and the number of subsegments you have to split the array to.
The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109).
Print single integer — the maximum possible integer you can get if you split the array into k non-empty subsegments and take maximum of minimums on the subsegments.
5 2 1 2 3 4 5
5
5 1 -4 -5 -3 -2 -1
-5
A subsegment [l, r] (l ≤ r) of array a is the sequence al, al + 1, ..., ar.
Splitting of array a of n elements into k subsegments [l1, r1], [l2, r2], ..., [lk, rk] (l1 = 1, rk = n, li = ri - 1 + 1 for all i > 1) is k sequences (al1, ..., ar1), ..., (alk, ..., ark).
In the first example you should split the array into subsegments [1, 4] and [5, 5] that results in sequences (1, 2, 3, 4) and (5). The minimums are min(1, 2, 3, 4) = 1 and min(5) = 5. The resulting maximum is max(1, 5) = 5. It is obvious that you can't reach greater result.
In the second example the only option you have is to split the array into one subsegment [1, 5], that results in one sequence ( - 4, - 5, - 3, - 2, - 1). The only minimum is min( - 4, - 5, - 3, - 2, - 1) = - 5. The resulting maximum is - 5.
题解: 当k=1时,很显然,输出数组的最小值就行了;当k>2时,也很显然,只要输出数组的最大值就行了,因为分成大于等于3段的数组,我们可以将最大值单独分成一份,这样不管其他怎么分答案永远是最大值。当k=2的时候,我们可以记录一下1~i和i~n两段的最小值,然后O(n)扫一遍就好了..不过k=2的时候还有更简单的方法,就是直接输出max(a[1],a[n])。可以发现,两段中必有一段含有数列的最小值,这一段的最小值是确定的。而这两段肯定分别包含一个端点,因此另一段的最小值不会小于端点值。可以发现,这个值一定能取到。因此,输出两个端点的最大值即可。
代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
#define MAX 1000000005
int a[100005];
int main()
{
int n,k;
int maxn=-MAX,minn=MAX;
cin>>n>>k;
for(int i=0; i<n; i++) {
cin>>a[i];
if(a[i] > maxn) maxn = a[i];
if(a[i] < minn) minn = a[i];
}
if(k==1) {
cout<<minn<<endl;
}
else if(k==2){
cout<<max(a[0],a[n-1])<<endl;
}
else {
cout<<maxn<<endl;
}
return 0;
}