B - Tricky Sum

本文介绍了一个算法问题,即计算从1到n的所有整数之和,但所有2的幂次方项取负值。通过输入多个n值并计算每个值对应的序列和,展示了如何解决这个问题。提供了完整的C语言代码实现。

点击打开链接



In this problem you are to calculate the sum of all integers from 1 to n, but you should take all powers of two with minus in the sum.

For example, for n = 4 the sum is equal to  - 1 - 2 + 3 - 4 =  - 4, because 12 and 4 are 2021 and 22 respectively.

Calculate the answer for t values of n.

Input

The first line of the input contains a single integer t (1 ≤ t ≤ 100) — the number of values of n to be processed.

Each of next t lines contains a single integer n (1 ≤ n ≤ 109).

Output

Print the requested sum for each of t integers n given in the input.

Example
Input
2
4
1000000000
Output
-4
499999998352516354
Note

The answer for the first sample is explained in the statement.


提交了好多次,只要输入大的数就不对,才发现把范围开小了!!!

写的不是特别简短,但明白意思就ok;


代码:

#include<stdio.h>
int p[1000000];
int main()
{int t;
scanf("%d",&t);
while(t--)
{
long long  n,x,y,i,sum1=0,ans;
scanf("%lld",&n);
long long sum=1;
p[0]=1;
for( i=1;;i++)
{
sum=sum*2;
p[i]=sum;
    if(sum>n)
    break;
    }
    y=n*(n+1)/2;
for(int j=0;j<i;j++)
sum1=sum1+p[j];
ans=y-2*sum1;
printf("%lld\n",ans);
}
 return 0;
}

import torch import torch.nn as nn import torchvision from torchvision import transforms from torch.utils.data import Dataset import albumentations as A from albumentations.pytorch import ToTensorV2 import numpy as np import matplotlib.pyplot as plt from datasets import load_dataset #----------------------------------------------------------------------------------------------------------------------# #模型构建 #基础组件 class Conv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=None, groups=1): super().__init__() if padding is None: padding = (kernel_size - 1) // 2 self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, groups=groups, bias=False) self.bn = nn.BatchNorm2d(out_channels) self.act = nn.SiLU() # YOLOv8 使用 SiLU 激活函数 def forward(self, x): return self.act(self.bn(self.conv(x))) #基础组件 class C2f(nn.Module): def __init__(self, in_channels, out_channels, num_blocks=2, shortcut=False): super().__init__() self.out_channels = out_channels hidden_channels = int(out_channels * 0.5) self.conv1 = Conv(in_channels, hidden_channels * 2, 1) self.conv2 = Conv((hidden_channels * 2 + hidden_channels * num_blocks), out_channels, 1) self.blocks = nn.ModuleList() for _ in range(num_blocks): self.blocks.append(Conv(hidden_channels, hidden_channels, 3)) self.shortcut = shortcut def forward(self, x): y = list(self.conv1(x).chunk(2, 1)) # Split into two halves for block in self.blocks: y.append(block(y[-1])) return self.conv2(torch.cat(y, dim=1)) #基础组件 class SPPF(nn.Module): def __init__(self, in_channels, out_channels, k=5): super().__init__() hidden_channels = in_channels // 2 self.conv1 = Conv(in_channels, hidden_channels, 1) self.pool = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) self.conv2 = Conv(hidden_channels * 4, out_channels, 1) def forward(self, x): x = self.conv1(x) pool1 = self.pool(x) pool2 = self.pool(pool1) pool3 = self.pool(pool2) return self.conv2(torch.cat([x, pool1, pool2, pool3], dim=1)) #主干网络 class Backbone(nn.Module): def __init__(self): super().__init__() self.stage1 = nn.Sequential( Conv(3, 64, 3, 2), Conv(64, 128, 3, 2), C2f(128, 128, 3) ) self.stage2 = nn.Sequential( Conv(128, 256, 3, 2), C2f(256, 256, 6) ) self.stage3 = nn.Sequential( Conv(256, 512, 3, 2), C2f(512, 512, 6) ) self.stage4 = nn.Sequential( Conv(512, 1024, 3, 2), C2f(1024, 1024, 3), SPPF(1024, 1024) ) def forward(self, x): x = self.stage1(x) x = self.stage2(x) c3 = self.stage3(x) c4 = self.stage4(c3) return c3, c4 # 输出两个尺度用于 Neck #特征融合 class Neck(nn.Module): def __init__(self): super().__init__() self.conv1 = Conv(1024, 512, 1) self.upsample = nn.Upsample(scale_factor=2, mode='nearest') self.c2f1 = C2f(512 + 512, 512, 3) self.conv2 = Conv(512, 256, 1) self.c2f2 = C2f(256 + 256, 256, 3) self.conv3 = Conv(256, 256, 3, 2) self.c2f3 = C2f(256 + 256, 512, 3) self.conv4 = Conv(512, 512, 3, 2) self.c2f4 = C2f(512 + 512, 1024, 3) def forward(self, c3, c4): # 自顶向下:上采样 + 融合 p4 = self.conv1(c4) p4_up = self.upsample(p4) p4_cat = torch.cat([p4_up, c3], dim=1) p3 = self.c2f1(p4_cat) # 更高分辨率输出 p3_out = self.conv2(p3) p3_down = self.conv3(p3) p3_down_cat = torch.cat([p3_down, p4], dim=1) p4_out = self.c2f3(p3_down_cat) # 最深层输出 p4_down = self.conv4(p4_out) p4_down_cat = torch.cat([p4_down, c4], dim=1) p5_out = self.c2f4(p4_down_cat) return p3_out, p4_out, p5_out #解耦检测头 class DecoupledHead(nn.Module): def __init__(self, in_channels, num_classes=80): super().__init__() # 分离的 3×3 卷积分支 self.cls_conv = nn.Conv2d(in_channels, in_channels, 3, padding=1) self.reg_conv = nn.Conv2d(in_channels, in_channels, 3, padding=1) # 预测层 self.cls_pred = nn.Conv2d(in_channels, num_classes, 1) self.reg_pred = nn.Conv2d(in_channels, 4, 1) # tx, ty, tw, th self.obj_pred = nn.Conv2d(in_channels, 1, 1) # objectness self.act = nn.SiLU() def forward(self, x): c = self.act(self.cls_conv(x)) r = self.act(self.reg_conv(x)) cls = self.cls_pred(c) reg = self.reg_pred(r) obj = self.obj_pred(r) return torch.cat([reg, obj, cls], dim=1) #多尺度检测头 class Detect(nn.Module): def __init__(self, num_classes=80): super().__init__() self.num_classes = num_classes self.strides = [8, 16, 32] # 对应输出尺度 # 为每个尺度创建一个解耦头 self.head_small = DecoupledHead(256, num_classes) self.head_medium = DecoupledHead(512, num_classes) self.head_large = DecoupledHead(1024, num_classes) def forward(self, x): p3, p4, p5 = x pred_small = self.head_small(p3) # shape: (B, 4 + 1 + num_classes, H/8, W/8) pred_medium = self.head_medium(p4) # (B, ..., H/16, W/16) pred_large = self.head_large(p5) # (B, ..., H/32, W/32) return [pred_small, pred_medium, pred_large] #YOLO-V8整体模型 class YOLOv8(nn.Module): def __init__(self, num_classes=80): super().__init__() self.backbone = Backbone() self.neck = Neck() self.detect = Detect(num_classes) def forward(self, x): c3, c4 = self.backbone(x) features = self.neck(c3, c4) predictions = self.detect(features) return predictions #----------------------------------------------------------------------------------------------------------------------# #模型训练测试 # 下载并解压PASCAL VOC 2012 ds = load_dataset("corypaik/pascal_voc") # 包含 train/val split voc_train = ds["train"] voc_val = ds["validation"] print(voc_train) print(voc_train[0].keys()) #定义Dataset类 class HFDataset(Dataset): def __init__(self, hf_dataset, img_size=640): self.hf_dataset = hf_dataset self.img_size = img_size self.class_to_idx = { 'aeroplane': 0, 'bicycle': 1, 'bird': 2, 'boat': 3, 'bottle': 4, 'bus': 5, 'car': 6, 'cat': 7, 'chair': 8, 'cow': 9, 'diningtable': 10, 'dog': 11, 'horse': 12, 'motorbike': 13, 'person': 14, 'pottedplant': 15, 'sheep': 16, 'sofa': 17, 'train': 18, 'tvmonitor': 19 } self.idx_to_class = {v: k for k, v in self.class_to_idx.items()} # 增强 pipeline(注意:boxes 是归一化的 xyxy 格式) self.transform = A.Compose([ A.Resize(height=img_size, width=img_size), A.HorizontalFlip(p=0.5), A.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.1, p=0.5), A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ToTensorV2() ], bbox_params=A.BboxParams( format='coco', # 输入是 [x,y,w,h] 相对坐标!⚠️ label_fields=['class_labels'], min_visibility=0.1 )) def __len__(self): return len(self.hf_dataset) def __getitem__(self, idx): item = self.hf_dataset[idx] image = item["image"] # PIL Image orig_width, orig_height = item["width"], item["height"] img = np.array(image.convert("RGB")) # boxes: list of [x,y,w,h] (COCO format, absolute pixel values) boxes_abs = torch.tensor(item["boxes"], dtype=torch.float32) # (N, 4) labels = torch.tensor(item["labels"], dtype=torch.long) # (N,) # 转换为相对坐标 [0,1] 的 COCO 格式用于 Albumentations h, w = orig_height, orig_width boxes_rel_coco = boxes_abs.clone() boxes_rel_coco[:, [0, 2]] /= w # x, w boxes_rel_coco[:, [1, 3]] /= h # y, h # 过滤无效框 keep = (boxes_rel_coco[:, 2] > 0) & (boxes_rel_coco[:, 3] > 0) boxes_rel_coco = boxes_rel_coco[keep] labels = labels[keep] if len(boxes_rel_coco) == 0: boxes_rel_coco = torch.tensor([[0.1, 0.1, 0.1, 0.1]]) # dummy box labels = torch.tensor([0]) class_labels = labels.tolist() # 应用增强(会自动处理 resize + flip + normalize) try: transformed = self.transform( image=img, bboxes=boxes_rel_coco.numpy(), class_labels=class_labels ) except Exception as e: print(f"Augmentation error at index {idx}: {e}") # 回退 img_tensor = ToTensorV2()(image=A.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] )(image=img)["image"])["image"] boxes_tensor = torch.tensor([[0.1, 0.1, 0.2, 0.2]]) labels_tensor = torch.tensor([0]) else: img_tensor = transformed["image"] boxes_tensor = torch.tensor(transformed["bboxes"], dtype=torch.float32) labels_tensor = torch.tensor(transformed["class_labels"], dtype=torch.long) # 将增强后的 boxes 转回 xyxy 格式(归一化)以便 compute_loss 使用 # 当前 boxes_tensor 是 coco 格式 [cx,cy,w,h] → 转为 xyxy boxes_xyxy = torch.zeros_like(boxes_tensor) boxes_xyxy[:, 0] = boxes_tensor[:, 0] - boxes_tensor[:, 2] / 2 # x1 boxes_xyxy[:, 1] = boxes_tensor[:, 1] - boxes_tensor[:, 3] / 2 # y1 boxes_xyxy[:, 2] = boxes_tensor[:, 0] + boxes_tensor[:, 2] / 2 # x2 boxes_xyxy[:, 3] = boxes_tensor[:, 1] + boxes_tensor[:, 3] / 2 # y2 # clip 到 [0,1] boxes_xyxy.clamp_(0, 1) target = { "boxes": boxes_xyxy, "labels": labels_tensor, "image_id": torch.tensor([idx]) } return img_tensor, target # 创建数据集实例 train_dataset = HFDataset(voc_train, img_size=640) val_dataset = HFDataset(voc_val, img_size=640) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=8, shuffle=True, num_workers=4, pin_memory=True, collate_fn=lambda x: tuple(zip(*x)) # 默认即可 ) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=8, shuffle=False, num_workers=4, pin_memory=True, collate_fn=lambda x: tuple(zip(*x)) ) #损失函数 def compute_loss(outputs, targets, strides=[8, 16, 32], num_classes=20, alpha=0.5, gamma=0.5): """ Compute YOLOv8-style loss with simple positive sample assignment. outputs: List[Tensor] -> [P3, P4, P5], each shape (B, C, H, W) targets: List[dict] -> [{'boxes': (N,4), 'labels': (N,)}] """ device = outputs[0].device criterion_cls = nn.BCEWithLogitsLoss(reduction='none') criterion_obj = nn.BCEWithLogitsLoss(reduction='none') total_loss_cls = torch.zeros(1, device=device) total_loss_obj = torch.zeros(1, device=device) total_loss_reg = torch.zeros(1, device=device) num_positive = 0 # 特征图尺寸对应关系 img_size = 640 feature_sizes = [img_size // s for s in strides] # [80, 40, 20] for i, pred in enumerate(outputs): H, W = feature_sizes[i], feature_sizes[i] stride = strides[i] bs = pred.shape[0] # Reshape & split predictions: [B, C, H, W] -> [B, H*W, *] pred = pred.permute(0, 2, 3, 1).reshape(bs, -1, 4 + 1 + num_classes) reg_pred = pred[..., :4] # tx, ty, tw, th obj_pred = pred[..., 4] # objectness (flattened) cls_pred = pred[..., 5:] # class logits # Generate grid centers (center of each grid cell in original image space) yv, xv = torch.meshgrid([torch.arange(H), torch.arange(W)]) grid_xy = torch.stack((xv, yv), dim=2).float().to(device) # (H, W, 2) grid_xy = grid_xy.reshape(-1, 2) # (H*W, 2) grid_xy = grid_xy.unsqueeze(0).expand(bs, -1, -1) # (B, H*W, 2) anchor_points = (grid_xy + 0.5) * stride # (cx, cy) on original image # Decode predicted boxes (in xywh format) pred_xy = anchor_points + reg_pred[..., :2].sigmoid() * stride - 0.5 * stride pred_wh = torch.exp(reg_pred[..., 2:]) * stride pred_boxes = torch.cat([pred_xy, pred_wh], dim=-1) # (B, H*W, 4) # Prepare targets obj_target = torch.zeros_like(obj_pred) cls_target = torch.zeros_like(cls_pred) reg_target = torch.zeros_like(reg_pred) fg_mask = torch.zeros_like(obj_pred, dtype=torch.bool) for b in range(bs): tbox = targets[b]['boxes'] # (N, 4), xyxy format tlabel = targets[b]['labels'] # (N,) if len(tbox) == 0: continue # Convert tbox from xyxy to xywh tbox_xyxy = tbox tbox_xywh = torch.cat([ (tbox_xyxy[:, :2] + tbox_xyxy[:, 2:]) / 2, tbox_xyxy[:, 2:] - tbox_xyxy[:, :2] ], dim=1) # (N, 4) # Match: find best overlap between gt centers and anchor points gt_centers = tbox_xywh[:, :2] # (N, 2) distances = (anchor_points[b].unsqueeze(1) - gt_centers.unsqueeze(0)).pow(2).sum(dim=-1) # (H*W, N) _, closest_grid_idx = distances.min(dim=0) # each gt → nearest grid _, closest_gt_idx = distances.min(dim=1) # each grid → nearest gt # Positive samples: grids whose closest gt is itself pos_mask = torch.zeros(H * W, dtype=torch.bool, device=device) for gt_i in range(len(tbox)): grid_i = closest_grid_idx[gt_i] if closest_gt_idx[grid_i] == gt_i: # mutual match pos_mask[grid_i] = True fg_mask[b][pos_mask] = True obj_target[b][pos_mask] = 1.0 cls_target[b][pos_mask] = nn.functional.one_hot(tlabel.long(), num_classes=num_classes).float() # Regression target for positive samples matched_gt = tbox_xywh[pos_mask.sum(dim=0).nonzero(as_tuple=True)[0]] # tricky fix; assume one-to-one if len(matched_gt) > 0: reg_target[b][pos_mask] = torch.cat([ (matched_gt[:, :2] - anchor_points[b][pos_mask]) / stride, torch.log(matched_gt[:, 2:] / stride + 1e-8) ], dim=1) # Only compute loss on positive samples if fg_mask.any(): loss_obj = criterion_obj(obj_pred, obj_target) total_loss_obj += loss_obj.mean() pos_obj = obj_target == 1 if pos_obj.any(): total_loss_cls += criterion_cls(cls_pred[pos_obj], cls_target[pos_obj]).mean() total_loss_reg += torch.abs(reg_pred[pos_obj] - reg_target[pos_obj]).mean() num_positive += pos_obj.sum().item() else: total_loss_obj += obj_pred.sum() * 0 total_loss_cls += cls_pred.sum() * 0 total_loss_reg += reg_pred.sum() * 0 # Normalize losses if num_positive > 0: total_loss_reg /= num_positive total_loss_cls /= num_positive total_loss_obj /= len(outputs) total_loss = total_loss_obj + total_loss_cls + total_loss_reg * 5.0 # weight reg more return total_loss, total_loss_obj.detach(), total_loss_cls.detach(), total_loss_reg.detach() # 模型训练(真实损失) model = YOLOv8(num_classes=20).train().cuda() optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) for epoch in range(10): print(f"\nEpoch {epoch + 1}/10") for i, (images, targets) in enumerate(train_loader): images = images.cuda(non_blocking=True) # 前向传播 outputs = model(images) # List[Tensor]: [B, 25, H/8, W/8], ... # 计算真实损失 loss, loss_obj, loss_cls, loss_reg = compute_loss(outputs, targets, num_classes=20) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() if i % 10 == 0: print(f"Iter {i}, Loss: {loss.item():.4f} " f"(obj={loss_obj.item():.4f}, cls={loss_cls.item():.4f}, reg={loss_reg.item():.4f})") #----------------------------------------------------------------------------------------------------------------------# #可视化 #YOLO输出解码 def decode_outputs(outputs, strides=[8, 16, 32], img_size=640): """ 将 YOLO 输出解码为 [cx, cy, w, h] 形式的归一化框(相对坐标) 返回: (pred_boxes, pred_scores, pred_labels), each as tensor """ device = outputs[0].device pred_boxes = [] pred_scores = [] pred_labels = [] for i, pred in enumerate(outputs): bs, _, ny, nx = pred.shape stride = strides[i] pred = pred.permute(0, 2, 3, 1).reshape(bs, -1, 4 + 1 + 20) # [B, H*W, ...] reg_pred = pred[..., :4] # tx, ty, tw, th obj_pred = pred[..., 4:5].sigmoid() # objectness cls_pred = pred[..., 5:].sigmoid() # class scores # 获取 grid 中心点 yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) grid_xy = torch.stack((xv, yv), dim=2).float().to(device) # (ny, nx, 2) grid_xy = grid_xy.reshape(-1, 2).unsqueeze(0).expand(bs, -1, -1) # (B, H*W, 2) # 解码中心点 pred_xy = (grid_xy + 0.5 + reg_pred[..., :2].sigmoid()) * stride # 解码宽高 pred_wh = torch.exp(reg_pred[..., 2:]) * stride # 拼接为 xywh 框 boxes = torch.cat([pred_xy, pred_wh], dim=-1) # (B, H*W, 4) # 计算置信度:obj * max(cls_prob) scores, labels = torch.max(cls_pred, dim=-1) scores = scores * obj_pred.squeeze(-1) # confidence = obj × cls_score # 转换为绝对坐标并归一化到 [0,1] img_w, img_h = img_size, img_size boxes_normalized = boxes / torch.tensor([img_w, img_h, img_w, img_h], device=device) pred_boxes.append(boxes_normalized) pred_scores.append(scores) pred_labels.append(labels) # 合并所有尺度 pred_boxes = torch.cat(pred_boxes, dim=1) # (B, L, 4) pred_scores = torch.cat(pred_scores, dim=1) # (B, L) pred_labels = torch.cat(pred_labels, dim=1) # (B, L) return pred_boxes, pred_scores, pred_labels #NMS后处理 def postprocess(pred_boxes, pred_scores, pred_labels, conf_thresh=0.25, nms_thresh=0.5): """ 对每张图片进行 NMS 后处理 """ final_boxes, final_scores, final_labels = [], [], [] for i in range(pred_boxes.shape[0]): # 遍历 batch 中每张图 boxes = pred_boxes[i] # (L, 4) scores = pred_scores[i] # (L,) labels = pred_labels[i] # (L,) # 过滤低置信度 mask = scores > conf_thresh boxes = boxes[mask] scores = scores[mask] labels = labels[mask] if len(boxes) == 0: final_boxes.append(torch.empty(0, 4)) final_scores.append(torch.empty(0)) final_labels.append(torch.empty(0)) continue # 转 xyxy 并应用 NMS boxes_xyxy = torchvision.ops.box_convert(boxes, in_fmt='cxcywh', out_fmt='xyxy') keep = torchvision.ops.nms(boxes_xyxy, scores, nms_thresh) final_boxes.append(boxes[keep]) final_scores.append(scores[keep]) final_labels.append(labels[keep]) return final_boxes, final_scores, final_labels #可视化函数 def visualize_predictions(model, dataloader, idx_to_class, device="cuda", num_images=4): model.eval() inv_normalize = transforms.Compose([ transforms.Normalize(mean=[0., 0., 0.], std=[1/0.229, 1/0.224, 1/0.225]), transforms.Normalize(mean=[-0.485, -0.456, -0.406], std=[1., 1., 1.]), ]) figure, ax = plt.subplots(num_images, 2, figsize=(12, 6 * num_images)) if num_images == 1: ax = ax.unsqueeze(0) with torch.no_grad(): for i, (images, targets) in enumerate(dataloader): images = images.to(device) outputs = model(images) pred_boxes, pred_scores, pred_labels = decode_outputs(outputs) det_boxes, det_scores, det_labels = postprocess(pred_boxes, pred_scores, pred_labels) for j in range(min(num_images, len(images))): # 图像 j img = images[j].cpu() img = inv_normalize(img) img = torch.clamp(img, 0, 1) img = transforms.ToPILImage()(img) # 绘图 ax[j, 0].imshow(img); ax[j, 0].set_title("Ground Truth") ax[j, 1].imshow(img); ax[j, 1].set_title("Predictions") # 绘制 GT gt_boxes = targets[j]['boxes'].cpu() gt_labels = targets[j]['labels'].cpu() for k in range(len(gt_boxes)): box = gt_boxes[k].numpy() label = idx_to_class[gt_labels[k].item()] rect = plt.Rectangle( (box[0]*640, box[1]*640), (box[2]-box[0])*640, (box[3]-box[1])*640, fill=False, edgecolor='green', linewidth=2 ) ax[j, 0].add_patch(rect) ax[j, 0].text(box[0]*640, box[1]*640, label, color='white', fontsize=10, bbox=dict(facecolor='green', alpha=0.7)) # 绘制 Pred pred_box_img = det_boxes[j].cpu() * 640 # 转为像素坐标 pred_score_img = det_scores[j].cpu() pred_label_img = det_labels[j].cpu() for k in range(len(pred_box_img)): box = pred_box_img[k].numpy() score = pred_score_img[k].item() label = idx_to_class[pred_label_img[k].item()] x1, y1 = int(box[0]), int(box[1]) w, h = int(box[2] - box[0]), int(box[3] - box[1]) rect = plt.Rectangle( (x1, y1), w, h, fill=False, edgecolor='red', linewidth=2 ) ax[j, 1].add_patch(rect) ax[j, 1].text(x1, y1, f"{label}:{score:.2f}", color='white', fontsize=10, bbox=dict(facecolor='red', alpha=0.7)) ax[j, 0].axis('off'); ax[j, 1].axis('off') break # 只看第一批次 plt.tight_layout() plt.show() model.train() # 回到训练模式 # 类别索引反查表 idx_to_class = {v: k for k, v in train_dataset.class_to_idx.items()} # 在某个 epoch 后调用 visualize_predictions(model, val_loader, idx_to_class, device="cuda", num_images=4)
11-27
内容概要:本文提出了一种基于融合鱼鹰算法和柯西变异的改进麻雀优化算法(OCSSA),用于优化变分模态分解(VMD)的参数,进而结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)构建OCSSA-VMD-CNN-BILSTM模型,实现对轴承故障的高【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)精度诊断。研究采用西储大学公开的轴承故障数据集进行实验验证,通过优化VMD的模态数和惩罚因子,有效提升了信号分解的准确性与稳定性,随后利用CNN提取故障特征,BiLSTM捕捉时间序列的深层依赖关系,最终实现故障类型的智能识别。该方法在提升故障诊断精度与鲁棒性方面表现出优越性能。; 适合人群:具备一定信号处理、机器学习基础,从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选取的问题,实现参数自适应优化;②提升复杂工况下滚动轴承早期故障的识别准确率;③为智能制造与预测性维护提供可靠的技术支持。; 阅读建议:建议读者结合Matlab代码实现过程,深入理解OCSSA优化机制、VMD信号分解流程以及CNN-BiLSTM网络架构的设计逻辑,重点关注参数优化与故障分类的联动关系,并可通过更换数据集进一步验证模型泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值