How to BFU a OpenSolaris System

本文介绍如何通过BFU(Binary File Update)在Solaris系统中安装特定的软件包,如Crossbow Beta或Clearview's snoop on loopback等。文章详细记录了从下载BFU包到最终重启系统的全过程,并提供了简化操作的shell配置技巧。

How to BFU a System

Sometimes you want to try out a new feature not yet delivered into Solaris Nevada, and you have apply binaries using BFU. I imagine if you do this all the time, you know all the tricks and gotchas. I don't do it often enough and sometimes get caught up in some details. So here are the steps I tend to use.

First, get the latest BFU package from the ON (OS/Net) Consolidation. I typically only use the SUNWonbld tar file for my hardware.

Download the bits you want to install, such as those for Crossbow Beta or Clearview's snoop on loopback

To make life a little simpler, I add the following to root's .profile file.

if [ -d /opt/onbld ]
then
FASTFS=/opt/onbld/bin/`uname -p`/fastfs ; export FASTFS
BFULD=/opt/onbld/bin/`uname -p`/bfuld ; export BFULD
GZIPBIN=/usr/bin/gzip ; export GZIPBIN
PATH=$PATH:/opt/onbld/bin
fi

Now to apply the bits. After unpacking the bits into a temporary location, lets say /tmp/bfu, install the onbld package.

# pkgadd -d onbld all

Processing package instance from

OS-Net Build Tools(sparc) 11.11,REV=2008.03.18.14.39
Copyright 2008 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

...

Installation of was successful.
#
I re-read my .profile, and verify that the necessary BFU variables are set
# . /.profile
# echo $FASTFS
/opt/onbld/bin/sparc/fastfs
Now apply the BFU (this one is for Crossbow beta). You must use the full pathname!
# bfu `pwd`/nightly-nd
Copying /opt/onbld/bin/bfu to /tmp/bfu.1000
Executing /tmp/bfu.1000 /tmp/bfu/nightly-nd

...

Entering post-bfu protected environment (shell: ksh).
Edit configuration files as necessary, then reboot.

bfu#
Note that you end up in the BFU shell. Now issue an automatic conflict resolution check.
bfu# /opt/onbld/bin/acr
Getting ACR information from /tmp/bfu/nightly-nd... ok

updating //platform/sun4v/boot_archive
Finished. See /tmp/acr.nhaqVi/allresults for complete log.
bfu#

bfu# exit
Exiting post-bfu protected environment. To reenter, type:
LD_NOAUXFLTR=1 LD_LIBRARY_PATH=/tmp/bfulib LD_LIBRARY_PATH_64=/tmp/bfulib/64
PATH=/tmp/bfubin /tmp/bfubin/ksh
#
Its time to reboot and run with the new bits!

Note: This article is cited from http://blogs.sun.com/stw/date/20080326.
内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值