注意执行之前关掉所有其他无关的应用, 将内存腾出来, 我的是8G内存, RTX2060结果头一层的2000个unit的全连接没法跑, 所以减少到1000, 注意内存不足的情况.
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time
def time_count(func):
print("开启装饰器")
def call_func(*args, **kwargs):
strat = time.time()
func(*args, **kwargs)
finish = time.time()
print("此优化器的执行时间为:%f" % (finish-strat))
return call_func
@time_count
def main(optimizer):
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 128
n_batch = mnist.train.num_examples // batch_size
x = tf.placeholder(tf.float32, [None,784])
y = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
W1 = tf.Variable(tf.truncated_normal([784,1000],stddev=0.1))
b1 = tf.Variable(tf.zeros([1000]))
layer1 = tf.nn.tanh(tf.matmul(x,W1) + b1)
layer1 = tf.nn.dropout(layer1,keep_prob=keep_prob)
W2 = tf.Variable(tf.truncated_normal([1000,500],stddev=0.1))
b2 = tf.Variable(tf.zeros([1, 500]))
layer2 = tf.nn.tanh(tf.matmul(layer1,W2) + b2)
layer2 = tf.nn.dropout(layer2,keep_prob=keep_prob)
W3 = tf.Variable(tf.truncated_normal([500,10],stddev=0.1))
b3 = tf.Variable(tf.zeros([1,10]))
prediction = tf.matmul(layer2,W3) + b3
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
train_step = optimizer.minimize(loss)
init = tf.global_variables_initializer()
prediction_2 = tf.nn.softmax(prediction)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction_2,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(init)
for epoch in range(30):
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x:batch_xs, y:batch_ys, keep_prob:0.8})
acc = sess.run(accuracy, feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0} )
print("Iter " + str(epoch) + " Testing Accuracy: " + str(acc))
if __name__ == '__main__':
"""
在相同学习率的情况下比对各个优化器的迭代速度和准确率(利用装饰器)
"""
train_step1 = tf.train.GradientDescentOptimizer(0.01)
train_step2 = tf.train.AdadeltaOptimizer(0.01)
train_step3 = tf.train.AdamOptimizer()
train_step4 = tf.train.RMSPropOptimizer(learning_rate=0.001)
train_step5 = tf.train.AdagradOptimizer(learning_rate=0.01)
train_step7 = tf.train.MomentumOptimizer(0.01, momentum = 0.7)
main(train_step7)