Given a binary tree, find the maximum path sum.
The path may start and end at any node in the tree.
For example:
Given the below binary tree,
1 / \ 2 3
Return 6
.
设f(n)表示根n到所有节点的路径中节点值加和最大值。那么f(n)的值等于它左、右子树的加和最大值的较大者(大于0时)与节点n的值的加和,即:
f(n) = max{f(n->left), f(n->right), 0} + n->val
即 g(n) = max{f(n->left), 0} + max{f(n->right), 0} + n->val;
那么对所有节点求得g(n)的最大值就是本题结果。
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int maxPath(TreeNode *root, int &maxsum)
{
if (!root) return 0;
int lv = maxPath(root->left, maxsum);
int rv = maxPath(root->right, maxsum);
int val = root->val;
if (lv > 0) val += lv;
if (rv > 0) val += rv;
maxsum = max(maxsum, val);
return max(max(lv, rv), 0) + root->val;
}
int maxPathSum(TreeNode *root) {
int maxsum = INT_MIN;
maxPath(root, maxsum);
return maxsum;
}
};
上述代码实际上后序遍历了一遍二叉树,过程中顺便得出了最大值,时间复杂度为O(n)