Faster R-CNN/R-FCN里mAP的计算过程(voc_eval.py解析)

Faster R-CNN/ R-FCN在github上的python源码用mAP来度量模型的性能。mAP是各类别AP的平均,而各类别AP值是该类别precision(prec)对该类别recall(rec)的积分得到的,即PR曲线下面积,关于PR曲线和AP计算相关博客很多不在这赘述,这里主要从代码角度看一下pascal_voc.py和voc_eval.py里关于AP,rec, prec的实现。

源码里有AP和mAP的计算部分,但没有画PR曲线,上一篇博客讲了通过在lib/datasets/pascal_voc.py里加几行代码画PR曲线。严格来说,其实就是加了一句话:

pl.plot(rec, prec, lw=2, 
              label='Precision-recall curve of class {} (area = {:.4f})'
                    ''.format(cls, ap))

参数里的rec和prec是由函数voc_eval得到:

rec, prec, ap = voc_eval(
        filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
        use_07_metric=use_07_metric)

该函数在lib/datasets/voc_eval.py中,详细分析如下:

# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------

import xml.etree.ElementTree as ET
import os
import cPickle
import numpy as np

def parse_rec(filename): #读取标注的xml文件
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(filename)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        obj_struct['pose'] = obj.find('pose').text
        obj_struct['truncated'] = int(obj.find('truncated').text)
        obj_struct['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)

  
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值