虹科分享 | 谷歌Vertex AI平台使用Redis搭建大语言模型

最近,谷歌宣布旗下Vertex人工智能平台最新支持了生成式人工智能,是什么支持语言模型实现与人类的语言交互呢?语言模型的大量知识储备从何而来呢?

一、语言模型构件

应用程序生成、理解和使用人类语言的能力正变得越来越重要,从客服机器人到虚拟助手,再到内容生成,人们对AI应用功能的需求横跨众多领域,而这一切的实现,都要归功于谷歌的 PaLM 2 等基础模型,这些模型经过精心调教,可以生成类似人类表达风格的内容。
在这一动态环境中,基础模型和高性能数据层这两个基本组件始终是创建高效、可扩展语言模型应用的关键。

1、基础模型:
基础模型是生成式人工智能应用的基石,大型语言模型(Large Language Model,LLM)是其中的一个子集。 LLM 通过大量的文本训练,使其能够为各种任务生成具有上下文相关性的类似人类表达风格的文本。改进这些模型,使其更加复杂,从而使应用可以更精炼、更有效地响应用户输入。所选择的语言模型会显著影响应用的性能、成本和服务质量。

然而,PaLM 2 等模型虽然功能强大,但也有其局限性,例如当缺乏特定领域的数据时,模型可能不够相关,而且可能无法及时呈现新信息或准确信息 。LLM 在提示(prompts)中可以处理的上下文长度(即词组数量)有硬性限制,此外,LLM 的训练或微调需要大量的计算资源,这会使成本剧增。要在这些限制和优势之间取得平衡,需要进行谨慎的策略和强大基础设施的支持。

2、高性能的数据层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值