在看此文件源码之前,先看到此文件头部的英文注释,以下是本人理解翻译版:</p>
该文件实现了一个数据结构映射到其他字符串的字符串,实施一个O(n)查找数据结构的设计是非常记忆高效的。 Redis的hase类型就是使用这种由小数量元素组成的数据结构,转换为一个哈希表。鉴于很多次Redis hase是用来表示对象组成的一些字段,这是一种在内存使用上很大的成功。
它的zipmap的格式为:
<zmlen><len>"foo"<len><free>"bar"<len>"hello"<len><free>"world"
<zmlen>是1字节长度,持有的当前zipmap的大小。当zipmap长度大于或等于254,这个值并不使用,zipmap需要遍历找出长度 。
<len>是下列字符串的长度(键或值)。<len>长度编码在一个单一的值或在一个5字节值。如果第一个字节值(作为一个unsigned 8位值)是介于0和252,这是一个单字节长度。如果它是253,接着后面会是一个四字节的无符号整数(在主机字节排序)。一个值255用于信号结束的散列。特殊值254是用来标记空空间,可用于添加新的键/值对。
<free>是修改key关联的value后string后的未使用的空闲的字节数。例如,如果“foo” 设置为“bar”,后“foo”将被设置为“hi”,它将有一个免费的字节,使用如果值将稍后再扩大,甚至添加一对适合的键/值。
<free>总是一个unsigned 8位,因为如果在一个更新操作有很多免费的字节,zipmap将重新分配,以确保它是尽可能小。
通过注释可以清楚此结构的最大优点就是内存使用。由此也基本知道了其结构的组成,下面分析源码也轻松很多。
/* Create a new empty zipmap. */
unsigned char *zipmapNew(void) {
unsigned char *zm = zmalloc(2);
zm[0] = 0; /* Length */
zm[1] = ZIPMAP_END;
return zm;
}
新建一个空的zipmap,其结构如图:
/* Decode the encoded length pointed by 'p' */
static unsigned int zipmapDecodeLength(unsigned char *p) {
unsigned int len = *p;
if (len < ZIPMAP_BIGLEN) return len;
memcpy(&len,p+1,sizeof(unsigned int));
memrev32ifbe(&len);//大小端转换
return len;
}
/* Encode the length 'l' writing it in 'p'. If p is NULL it just returns
* the amount of bytes required to encode such a length. */
static unsigned int zipmapEncodeLength(unsigned char *p, unsigned int len) {
if (p == NULL) {
return ZIPMAP_LEN_BYTES(len);
} else {
if (len < ZIPMAP_BIGLEN) {
p[0] = len;
return 1;
} else {
p[0] = ZIPMAP_BIGLEN;
memcpy(p+1,&len,sizeof(len));
memrev32ifbe(p+1);
return 1+sizeof(len);
}
}
}
//上为解码,下为编码(将key的长度转为char,返回所占的字节数)。主要是当key/value的长度大于等于ZIPMAP_BIGLEN(254)时,<len>的头字符就为ZIPMAP_BIGLEN,后将len转换为char型,存入len。(为了节省这四个字节)
/* Search for a matching key, returning a pointer to the entry inside the
* zipmap. Returns NULL if the key is not found.
*
* If NULL is returned, and totlen is not NULL, it is set to the entire
* size of the zimap, so that the calling function will be able to
* reallocate the original zipmap to make room for more entries. */
static unsigned char *zipmapLookupRaw(unsigned char *zm, unsigned char *key, unsigned int klen, unsigned int *totlen) {
unsigned char *p = zm+1, *k = NULL;//开始+1,跳过length
unsigned int l,llen;
while(*p != ZIPMAP_END) {
unsigned char free;
/* Match or skip the key */
l = zipmapDecodeLength(p);//取得key的长度
llen = zipmapEncodeLength(NULL,l);//取得key占用的字节数
if (key != NULL && k == NULL && l == klen && !memcmp(p+llen,key,l)) {
/* Only return when the user doesn't care
* for the total length of the zipmap. */
if (totlen != NULL) {
k = p;
} else {
return p;
}
}
p += llen+l;
/* Skip the value as well */
l = zipmapDecodeLength(p);//取得value的长度
p += zipmapEncodeLength(NULL,l);//取得value占用的字节数
free = p[0];
p += l+1+free; /* +1 to skip the free byte */
}
if (totlen != NULL) *totlen = (unsigned int)(p-zm)+1;
return k;
}
//查找key,注意totlen的值,如果没到key ,totlen将等于p的总长度,如果找到了,totlen等于key的下标
static unsigned long zipmapRequiredLength(unsigned int klen, unsigned int vlen) {
unsigned int l;
l = klen+vlen+3;//注意此处为何要加3? (klen和vlen本身要占用1字节,还有1字节是留给free的)
if (klen >= ZIPMAP_BIGLEN) l += 4;//这里加4,是因为上面编码方法中所明
if (vlen >= ZIPMAP_BIGLEN) l += 4;
return l;
}
/* Return the total amount used by a key (encoded length + payload) */
static unsigned int zipmapRawKeyLength(unsigned char *p) {
unsigned int l = zipmapDecodeLength(p);
return zipmapEncodeLength(NULL,l) + l;
}
//返回key总字节数
/* Return the total amount used by a value
* (encoded length + single byte free count + payload) */
static unsigned int zipmapRawValueLength(unsigned char *p) {
unsigned int l = zipmapDecodeLength(p);
unsigned int used;
used = zipmapEncodeLength(NULL,l);
used += p[used] + 1 + l;
return used;
}
//返回value总字节数,包含free字节
/* If 'p' points to a key, this function returns the total amount of
* bytes used to store this entry (entry = key + associated value + trailing
* free space if any). */
static unsigned int zipmapRawEntryLength(unsigned char *p) {
unsigned int l = zipmapRawKeyLength(p);
return l + zipmapRawValueLength(p+l);
}
//返回key和value总共所占的字节
static inline unsigned char *zipmapResize(unsigned char *zm, unsigned int len) {
zm = zrealloc(zm, len);
zm[len-1] = ZIPMAP_END;
return zm;
}
//重置zm
/* Set key to value, creating the key if it does not already exist.
* If 'update' is not NULL, *update is set to 1 if the key was
* already preset, otherwise to 0. */
unsigned char *zipmapSet(unsigned char *zm, unsigned char *key, unsigned int klen, unsigned char *val, unsigned int vlen, int *update) {
unsigned int zmlen, offset;
unsigned int freelen, reqlen = zipmapRequiredLength(klen,vlen);
unsigned int empty, vempty;
unsigned char *p;
freelen = reqlen;
if (update) *update = 0;
p = zipmapLookupRaw(zm,key,klen,&zmlen);
if (p == NULL) {
/* Key not found: enlarge */
zm = zipmapResize(zm, zmlen+reqlen);
p = zm+zmlen-1;
zmlen = zmlen+reqlen;
/* Increase zipmap length (this is an insert) */
if (zm[0] < ZIPMAP_BIGLEN) zm[0]++;
} else {
/* Key found. Is there enough space for the new value? */
/* Compute the total length: */
if (update) *update = 1;
freelen = zipmapRawEntryLength(p);
if (freelen < reqlen) {
/* Store the offset of this key within the current zipmap, so
* it can be resized. Then, move the tail backwards so this
* pair fits at the current position. */
offset = p-zm;
zm = zipmapResize(zm, zmlen-freelen+reqlen);
p = zm+offset;
/* The +1 in the number of bytes to be moved is caused by the
* end-of-zipmap byte. Note: the *original* zmlen is used. */
memmove(p+reqlen, p+freelen, zmlen-(offset+freelen+1));
zmlen = zmlen-freelen+reqlen;
freelen = reqlen;
}
}
/* We now have a suitable block where the key/value entry can
* be written. If there is too much free space, move the tail
* of the zipmap a few bytes to the front and shrink the zipmap,
* as we want zipmaps to be very space efficient. */
empty = freelen-reqlen;
if (empty >= ZIPMAP_VALUE_MAX_FREE) {
/* First, move the tail <empty> bytes to the front, then resize
* the zipmap to be <empty> bytes smaller. */
offset = p-zm;
memmove(p+reqlen, p+freelen, zmlen-(offset+freelen+1));
zmlen -= empty;
zm = zipmapResize(zm, zmlen);
p = zm+offset;
vempty = 0;
} else {
vempty = empty;
}
/* Just write the key + value and we are done. */
/* Key: */
p += zipmapEncodeLength(p,klen);
memcpy(p,key,klen);
p += klen;
/* Value: */
p += zipmapEncodeLength(p,vlen);
*p++ = vempty;
memcpy(p,val,vlen);
return zm;
}
此方法图解如下:
文件中还有几个方法如zipmapGet,zipmapNext等,如果zipmapSet搞懂,其它方法便无障碍。
/* Return the number of entries inside a zipmap */
unsigned int zipmapLen(unsigned char *zm) {
unsigned int len = 0;
if (zm[0] < ZIPMAP_BIGLEN) {
//早在注释时就说过,如果size大小超过了ZIPMAP_BIGLEN,那么zipmap的第一个字节将不会记录size,size需要遍历才能得出
len = zm[0];
} else {
unsigned char *p = zipmapRewind(zm);
while((p = zipmapNext(p,NULL,NULL,NULL,NULL)) != NULL) len++;
/* Re-store length if small enough */
if (len < ZIPMAP_BIGLEN) zm[0] = len;
}
return len;
}
//为什么在记录zipmap长度时不效仿记录key/value长度的方法,以至于如果取个数都需要遍历一遍?
不过根据我的实际应用经验,很少会直接去取hase的size.

本文深入解析了Redis中ZipMap数据结构的设计原理与实现细节。介绍了ZipMap如何高效地利用内存来存储键值对,包括其内部编码方式、查找机制及更新操作等关键特性。
1851

被折叠的 条评论
为什么被折叠?



