avl树是其每个节点的左子树和右子树的高度最多差1的二叉查找树。当在一棵avl树中插入节点的时候,很可能把avl树的平衡给破坏掉,在不平衡的情况下,可以通过对树做单次旋转或者复杂些的双旋转来处理。具体的旋转方法Google去 O(∩_∩)O,这里就不做详细介绍啦。下面仅给已实现的avl树的代码。
/*====================*\
| AvlTree.h |
\*====================*/
#ifndef _AVL_TREE_H_
#define _AVL_TREE_H_
#define ElementType int
#define Max(a,b) (a)>(b)?(a):(b)
struct AvlNode;
typedef struct AvlNode * Position;
typedef struct AvlNode * AvlTree;
//释放树空间
void ClearTree(AvlTree t);
//计算节点的高度
int Height(Position p);
//插入节点
AvlTree Insert(ElementType x,AvlTree t);
//先序遍历
void Preorder_TreePrint(AvlTree t);
//中序遍历
void Inorder_TreePrint(AvlTree t);
//后序遍历
void Postorder_TreePrint(AvlTree t);
//针对左子树做单旋转
static Position SingleRotateWithLeft(Position k2);
//针对右子树做单旋转
static Position SingleRotateWithRight(Position k2);
//针对左子树做双旋转
static Position DoubleRotateWithLeft(Position k3);
//针对右子树做双旋转
static Position DoubleRotateWithRight(Position k3);
#endif
//AVL树结构体
struct AvlNode {
ElementType Element;
AvlTree Left;
AvlTree Right;
int Height;
};
/*====================*\
| AvlTree.c |
\*====================*/
#include "AvlTree.h"
#include <stdio.h>
#include <stdlib.h>
//清空树
void ClearTree(AvlTree t)
{
if(t!=NULL)
{
ClearTree(t->Left);
ClearTree(t->Right);
free(t);
}
}
//先序遍历
void Preorder_TreePrint(AvlTree t)
{
if(t!=NULL)
{
printf("%d(%d) \n",t->Element,t->Height);
Preorder_TreePrint(t->Left);
Preorder_TreePrint(t->Right);
}
}
//中序遍历
void Inorder_TreePrint(AvlTree t)
{
if(t!=NULL)
{
Inorder_TreePrint(t->Left);
printf("%d(%d) \n",t->Element,t->Height);
Inorder_TreePrint(t->Right);
}
}
//后续遍历
void Postorder_TreePrint(AvlTree t)
{
if(t!=NULL)
{
Postorder_TreePrint(t->Left);
Postorder_TreePrint(t->Right);
printf("%d(%d) \n",t->Element,t->Height);
}
}
//插入节点
AvlTree Insert(ElementType x,AvlTree t)
{
if (t == NULL)
{
t = (AvlTree)malloc(sizeof(struct AvlNode));
if (t == NULL)
{
printf("out of space!!\n");
}
else
{
t->Element = x;
t->Left = NULL;
t->Right = NULL;
t->Height = 0;
}
}
else if(x < t->Element)
{
t->Left = Insert(x,t->Left);
if (Height(t->Left)-Height(t->Right) == 2)
{
if (x < t->Left->Element)
{
t = SingleRotateWithLeft(t);
}
else
{
t = DoubleRotateWithLeft(t);
}
}
}
else if (x > t->Element)
{
t->Right = Insert(x,t->Right);
if (Height(t->Right)-Height(t->Left) == 2)
{
if (x > t->Right->Element)
{
t = SingleRotateWithRight(t);
}
else
{
t = DoubleRotateWithRight(t);
}
}
}
t->Height = Max(Height(t->Left),Height(t->Right))+1;
return t;
}
//算节点的高度
int Height(Position p)
{
if(p == NULL)
return 0;
else
return Max(Height(p->Left),Height(p->Right))+1;
}
//针对左子树做单旋转
static Position SingleRotateWithLeft(Position k2)
{
Position k1;
k1 = k2->Left;
k2->Left=k1->Right;
k1->Right = k2;
k2->Height = Max(Height(k2->Left),Height(k2->Right))+1;
k1->Height = Max(Height(k1->Left),Height(k1->Right))+1;
return k1;
}
//针对右子树做单旋转
static Position SingleRotateWithRight(Position k2)
{
Position k1;
k1 = k2->Right;
k2->Right = k1->Left;
k1->Left = k2;
k2->Height = Max(Height(k2->Left),Height(k2->Right))+1;
k1->Height = Max(Height(k1->Left),Height(k1->Right))+1;
return k1;
}
//针对左子树做双旋转
static Position DoubleRotateWithLeft(Position k3)
{
k3->Left = SingleRotateWithRight(k3->Left);
return SingleRotateWithLeft(k3);
}
//针对右子树做双旋转
static Position DoubleRotateWithRight(Position k3)
{
k3->Right = SingleRotateWithLeft(k3->Right);
return SingleRotateWithRight(k3);
}
/*====================*\
| main.c |
\*====================*/
#include "AvlTree.h"
#include <stdio.h>
int main()
{
int i = 0;
AvlTree at = NULL;
for(i=0;i<10;i++)
at = Insert(i,at);
Preorder_TreePrint(at);
ClearTree(at);
return 0;
}
262

被折叠的 条评论
为什么被折叠?



