Pydantic
Pydantic 是一个在 Python 中用于数据验证和解析的第三方库。它提供了一种简单且直观的方式来定义数据模型,并使用这些模型对数据进行验证和转换。
Pydantic 的一些主要特性:
-
类型注解:Pydantic 使用类型注解来定义模型的字段类型。你可以使用 Python 内置的类型、自定义类型或者其他 Pydantic 提供的验证类型。
-
数据验证:Pydantic 自动根据模型定义进行数据验证。它会检查字段的类型、长度、范围等,并自动报告验证错误。你可以使用
ValidationError
异常来捕获验证错误。 -
模型转换:Pydantic 提供了从各种数据格式(例如 JSON、字典)到模型实例的转换功能。它可以自动将输入数据解析成模型实例,并保留类型安全性和验证规则。
Pydantic 使用前需要先进行安装。
pip install pydantic
Pydantic 基本操作
使用 Pydantic,可以定义一个模型类,该类需要继承 pydantic
中的 BaseModel
类,模型类描述了数据的结构和类型,并指定验证规则。
然后,可以使用这个模型类来验证输入的数据是否符合预期,并以类型安全的方式访问和操作数据。
from pydantic import BaseModel, ValidationError
class User(BaseModel):
name: str