zoj 3861 Valid Pattern Lock 手势密码 DFS

本文介绍了一种算法,用于计算特定条件下有效的手势密码数量,并按字典序输出所有可能的组合。该算法通过深度优先搜索(DFS)实现,避免了非法跨越未激活节点的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Valid Pattern Lock

Time Limit: 2 Seconds Memory Limit: 65536 KB

 

Pattern lock security is generally used in Android handsets instead of a password. The pattern lock can be set by joining points on a 3 × 3 matrix in a chosen order. The points of the matrix are registered in a numbered order starting with 1 in the upper left corner and ending with 9 in the bottom right corner.

valid_pattern_lock

A valid pattern has the following properties:

  • A pattern can be represented using the sequence of points which it's touching for the first time (in the same order of drawing the pattern). And we call those points as active points.For every two consecutive points A and B in the pattern representation, if the line segment connecting A and B passes through some other points, these points must be in the sequence also and comes before A and B, otherwise the pattern will be invalid.In the pattern representation we don't mention the same point more than once, even if the pattern will touch this point again through another valid segment, and each segment in the pattern must be going from a point to another point which the pattern didn't touch before and it might go through some points which already appeared in the pattern.

     

    Now you are given n active points, you need to find the number of valid pattern locks formed from those active points.

    Input

    There are multiple test cases. The first line of input contains an integer Tindicating the number of test cases. For each test case:

    The first line contains an integer n (3 ≤ n ≤ 9), indicating the number of active points. The second line contains n distinct integers a1a2, … an (1 ≤ ai ≤ 9) which denotes the identifier of the active points.

    Output

    For each test case, print a line containing an integer m, indicating the number of valid pattern lock.

    In the next m lines, each contains n integers, indicating an valid pattern lock sequence. The m sequences should be listed in lexicographical order.

    Sample Input
    ?
    1
    2
    3
    1
    3
    1 2 3
    Sample Output
    ?
    1
    2
    3
    4
    5
    4
    1 2 3
    2 1 3
    2 3 1
    3 2 1


/*
  题目:B  Valid Pattern Lock
  链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5473
  题意:给定几个数字 ,问能组成多少种手势密码,并按照字典序输出
  思路:从小到大DFS
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int s[10]={0},a[10]={0},vis[10]={0},n,cnt,ans[150000][10]={0};
int no[8][2]={{1,3},{1,7},{1,9},{2,8},{3,7},{3,9},{4,6},{7,9} };
bool judge(int x,int y) //判定是否越过‘未访问数字’
{
    if(x>y) swap(x,y);
    for(int i=0;i<8;i++)
        if(x==no[i][0]&&y==no[i][1]&&!vis[(x+y)/2]) return false;
    return true;
}
void dfs(int x,int k)
{
    if(k==n-1){
        for(int i=0;i<n;i++) ans[cnt][i]=s[i];//ans储存最终结果
        cnt++; //结果数+1
    }
    else for(int i=0; i<n; i++)
            if(!vis[a[i]]&&judge(x,a[i])) //没有被访问过,而且不会越过‘未访问数字’
            {
                s[k+1]=a[i];
                vis[a[i]]=1; //访问标记
                dfs(a[i],k+1); //向下dfs
                vis[a[i]]=0; //解除
            }
}
void solve()
{
    cnt=0;memset(vis,0,sizeof(vis));//初始化
    for(int i=0; i<n; i++)
    {
        s[0]=a[i];
        vis[a[i]]=1;
        dfs(a[i],0);
        vis[a[i]]=0;
    }
}
int main()
{
    int T;scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i=0; i<n; i++)
            scanf("%d",&a[i]);
        sort(a,a+n);//排序
        solve();
        printf("%d\n",cnt);
        for(int i=0;i<cnt;i++){
            for(int j=0;j<n-1;j++) printf("%d ",ans[i][j]);
            printf("%d\n",ans[i][n-1]);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值