HDU-1505 City Game (线性dp)

本文介绍了一款城市建造游戏中的算法挑战,玩家需在有限区域内建造最大可能的矩形建筑以获取租金收益。文章详细解析了算法实现过程,包括如何处理已有建筑障碍及计算最优解。

City Game

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7672    Accepted Submission(s): 3326


Problem Description
Bob is a strategy game programming specialist. In his new city building game the gaming environment is as follows: a city is built up by areas, in which there are streets, trees,factories and buildings. There is still some space in the area that is unoccupied. The strategic task of his game is to win as much rent money from these free spaces. To win rent money you must erect buildings, that can only be rectangular, as long and wide as you can. Bob is trying to find a way to build the biggest possible building in each area. But he comes across some problems – he is not allowed to destroy already existing buildings, trees, factories and streets in the area he is building in.

Each area has its width and length. The area is divided into a grid of equal square units.The rent paid for each unit on which you're building stands is 3$.

Your task is to help Bob solve this problem. The whole city is divided into K areas. Each one of the areas is rectangular and has a different grid size with its own length M and width N.The existing occupied units are marked with the symbol R. The unoccupied units are marked with the symbol F.
 

Input
The first line of the input contains an integer K – determining the number of datasets. Next lines contain the area descriptions. One description is defined in the following way: The first line contains two integers-area length M<=1000 and width N<=1000, separated by a blank space. The next M lines contain N symbols that mark the reserved or free grid units,separated by a blank space. The symbols used are:

R – reserved unit

F – free unit

In the end of each area description there is a separating line.
 

Output
For each data set in the input print on a separate line, on the standard output, the integer that represents the profit obtained by erecting the largest building in the area encoded by the data set.
 

Sample Input
2 5 6 R F F F F F F F F F F F R R R F F F F F F F F F F F F F F F 5 5 R R R R R R R R R R R R R R R R R R R R R R R R R
 

Sample Output
45 0



#include <bits/stdc++.h>
using namespace std;
int l[1001], r[1001], h[1001][1001];
int main(){
	int R, C, T;
	scanf("%d", &T);
	while(T--){
		scanf("%d %d", &R, &C);
		for(int i = 1; i <= C; ++i){
			h[0][i] = 0;
		}
		char s;
		for(int i = 1; i <= R; ++i){
			for(int j = 1; j <= C; ++j){
				s = getchar();
				while(s != 'F' && s != 'R'){
					s = getchar();
				}
				if(s == 'R'){
					h[i][j] = 0;
				}
				else{
					h[i][j] = h[i - 1][j] + 1;
				}
			}
		}
		int ans = 0;
		for(int i = 1; i <= R; ++i){
			for(int j = 1; j <= C; ++j){
				l[j] = r[j] = j;
			}
			h[i][0] = -1;
			for(int j = 2; j <= C; ++j){
				while(h[i][j] <= h[i][l[j] - 1]){
					l[j] = l[l[j] - 1];
				}
			}
			h[i][C + 1] = -1;
			for(int j = C - 1; j >= 1; --j){
				while(h[i][j] <= h[i][r[j] + 1]){
					r[j] = r[r[j] + 1];
				}
			}
			for(int j = 1; j <= C; ++j){
				ans = max(ans, (r[j] - l[j] + 1) * h[i][j]);
			}
		}
		printf("%d\n", ans * 3);
	}
}

/*
题意:
1000*1000个网格只包含R,F,求面积最大的只包含F的矩阵面积。

思路:
对于每一个F,记录其上面有多少个连续的F,然后对于每一行,看其中F的高度向左右可以
延伸多长,当其高度比周围F小时可以延伸。然后枚举所有F,根据延伸宽度和其高度,计算面积即可。
*/


### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值