Roadblocks ---------- Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 14328 Accepted: 5037 Description Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path. The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N. The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path). Input Line 1: Two space-separated integers: N and R Lines 2..R+1: Each line contains three space-separated integers: A, B, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000) Output Line 1: The length of the second shortest path between node 1 and node N Sample Input 4 4 1 2 100 2 4 200 2 3 250 3 4 100 题目大意:某街区共有R条道路,N个路口。道路可以双向通行。问1号路抠到N号路口的次短路经长度是多少? 次短路指的是币最短路长度长的次短路经。同一条边可以经过多次。#include <iostream> #include <vector> #include <queue> #include <string.h> #include <stdio.h> #include <algorithm> using namespace std; const int maxn=5005; const int inf=1e9; int N,R; struct edge { int to,cost; }; typedef pair<int ,int> P ;///first 是从1到second的最短路 second 是路口标号 vector<edge>G[maxn];///邻接表 int dist[maxn];///最短路 int dist2[maxn];///次短路 void solve() { priority_queue<P ,vector<P>,greater<P> >que; fill(dist,dist+N,inf); fill(dist2,dist2+N,inf); dist[0]=0; //dist2[0]=0; que.push(P(0,0)); while(!que.empty()) { P p=que.top();///优先队列 ,用.top que.pop(); int v=p.second ,d=p.first; if(dist2[v]<d)continue; for(int i=0; i<G[v].size(); i++) { edge e=G[v][i]; int d2=d+e.cost; if(dist[e.to]>d2) { swap(dist[e.to],d2); que.push(P(dist[e.to],e.to)); } if(dist2[e.to]>d2&&dist[e.to]<d2) { dist2[e.to]=d2; que.push(P(dist2[e.to],e.to)); } } } printf("%d\n",dist2[N-1]); } int main() { int from; while(cin>>N>>R) { edge now; for(int i=0;i<R;i++) { cin>>from>>now.to>>now.cost; from--; now.to--;///标号从 0-N-1!! G[from].push_back(now); swap(now.to,from); G[from].push_back(now); } solve(); } return 0; }
poj 3255 次短路问题 Dijkstra 邻接表
最新推荐文章于 2024-09-11 09:41:05 发布
本文介绍了一种求解从起点到终点次短路径的算法实现。在一个包含多个路口和道路的网格中,通过使用优先队列和邻接表来记录最短路径与次短路径。该算法允许重复经过同一路口或道路。
3055

被折叠的 条评论
为什么被折叠?



