1、简介
IoC 容器:最主要是完成了对象的创建和依赖的管理注入等等。
所谓控制反转,就是把原先我们代码里面需要实现的对象创建、依赖的代码,反转给容器来帮忙实现。那么必然的我们需要创建一个容器,同时需要一种描述来让容器知道需要创建的对象与对象的关系。这个描述最具体表现就是我们可配置的文件。
具体描述IOC容器使用过程:
IOC容器---水桶
BeanFactory---最简单水桶接口,能装水,有手提
ApplicationContext---更高大上的水桶接口
BeanDefinition---水
Resource---水源位置
BeanDefinitionReader---打水工具
可以用 xml , properties 文件等语义化配置文件表示。
1.2 描述对象关系的文件存放在哪里?(水源)
可能是 classpath , filesystem ,或者是 URL 网络资源, servletContext 等。
1.3 有了配置文件,还需要对配置文件解析。(打水)
不同的配置文件对对象的描述不一样,如标准的,自定义声明式的,如何统一? 在内部需要有一个统一的关于对象的定义,所有外部的描述都必须转化成统一的描述定义。1.4 如何对不同的配置文件进行解析?
需要对不同的配置文件语法,采用不同的解析器
2、水桶
2.1、BeanFactory(最基本水桶)
其中BeanFactory作为最顶层的一个接口类,它定义了IOC容器的基本功能规范,BeanFactory 有三个子类:ListableBeanFactory、HierarchicalBeanFactory 和AutowireCapableBeanFactory。但是从上图中我们可以发现最终的默认实现类是 DefaultListableBeanFactory,他实现了所有的接口。那为何要定义这么多层次的接口呢?查阅这些接口的源码和说明发现,每个接口都有他使用的场合,它主要是为了区分在 Spring 内部在操作过程中对象的传递和转化过程中,对对象的数据访问所做的限制。例如 ListableBeanFactory 接口表示这些 Bean 是可列表的,而 HierarchicalBeanFactory 表示的是这些 Bean 是有继承关系的,也就是每个Bean 有可能有父 Bean。AutowireCapableBeanFactory 接口定义 Bean 的自动装配规则。这四个接口共同定义了 Bean 的集合、Bean 之间的关系、以及 Bean 行为.
public interface BeanFactory {
//对FactoryBean的转义定义,因为如果使用bean的名字检索FactoryBean得到的对象是工厂生成的对象,
//如果需要得到工厂本身,需要转义
String FACTORY_BEAN_PREFIX = "&";
//根据bean的名字,获取在IOC容器中得到bean实例
Object getBean(String name) throws BeansException;
//根据bean的名字和Class类型来得到bean实例,增加了类型安全验证机制。
Object getBean(String name, Class requiredType) throws BeansException;
//提供对bean的检索,看看是否在IOC容器有这个名字的bean
boolean containsBean(String name);
//根据bean名字得到bean实例,并同时判断这个bean是不是单例
boolean isSingleton(String name) throws NoSuchBeanDefinitionException;
//得到bean实例的Class类型
Class getType(String name) throws NoSuchBeanDefinitionException;
//得到bean的别名,如果根据别名检索,那么其原名也会被检索出来
String[] getAliases(String name);
}
2.2、ApplicationContext(高级水桶)
ApplicationContext提供BeanFactory不具有的新特性:
1. 资源访问功能:在Resource和ResourceLoader的基础上可以灵活的访问不同的资源。(实现ResourcePatternResolver接口)
2. 支持不同的信息源。可以实现国际化。(实现MessageSource接口)
3. 支持应用事件:继承了接口ApplicationEventPublisher,这样在上下文中为bean之间提供了事件机制。
以下是三种较常见的 ApplicationContext 实现方式:
1、ClassPathXmlApplicationContext:从classpath的XML配置文件中读取上下文,并生成上下文定义.应用程序上下文从程序环境变量中取得.
ApplicationContext context = new ClassPathXmlApplicationContext("bean.xml");
2、FileSystemXmlApplicationContext :由文件系统中的XML配置文件读取上下文。
ApplicationContext context = new FileSystemXmlApplicationContext("bean.xml");
3、XmlWebApplicationContext:由Web应用的XML文件读取上下文。
3、BeanDefinition(水)
用来抽象和描述一个具体bean对象。是描述一个bean对象的基本数据结构。
4、Resource(水源)
Resource接口是Spring资源访问策略的抽象,它本身并不提供任何资源访问实现,具体的资源访问由该接口的实现类完成——每个实现类代表一种资源访问策略。
Spring 为 Resource 接口提供了如下实现类:
UrlResource:访问网络资源的实现类。
ClassPathResource:访问类加载路径里资源的实现类。
FileSystemResource:访问文件系统里资源的实现类。
ServletContextResource:访问相对于 ServletContext 路径里的资源的实现类;
InputStreamResource:访问输入流资源的实现类。
ByteArrayResource:访问字节数组资源的实现类。
5、BeanDefinitionReader(打水工具)
将外部资源对象描述的bean定义统一转化为统一的内部数据结构BeanDefinition。对应不同的描述需要有不同的Reader。如XmlBeanDefinitionReader用来读取xml描述配置的bean对象。
6、IOC容器初始化过程
IoC容器的初始化包括BeanDefinition的Resource定位、载入和注册这三个基本的过程。我们以ApplicationContext为例讲解,ApplicationContext系列容器也许是我们最熟悉的,因为web项目中使用的XmlWebApplicationContext就属于这个继承体系,还有ClasspathXmlApplicationContext等,其继承体系如下图所示
6.1 Resource定位
public FileSystemXmlApplicationContext(String[] configLocations, boolean refresh, ApplicationContext parent)
throws BeansException {
super(parent);
setConfigLocations(configLocations);
if (refresh) {
refresh();
}
}
Spring IoC容器对Bean定义资源的载入是从refresh()函数开始的,refresh()是一个模板方法,refresh()方法的作用是:在创建IoC容器前,如果已经有容器存在,则需要把已有的容器销毁和关闭,以保证在refresh之后使用的是新建立起来的IoC容器。refresh的作用类似于对IoC容器的重启,在新建立好的容器中对容器进行初始化,对Bean定义资源进行载入。
public void refresh() throws BeansException, IllegalStateException {
synchronized (this.startupShutdownMonitor) {
//调用容器准备刷新的方法,获取容器的当时时间,同时给容器设置同步标识
prepareRefresh();
//告诉子类启动refreshBeanFactory()方法,Bean定义资源文件的载入从
//子类的refreshBeanFactory()方法启动
ConfigurableListableBeanFactory beanFactory = obtainFreshBeanFactory();
//为BeanFactory配置容器特性,例如类加载器、事件处理器等
prepareBeanFactory(beanFactory);
try {
//为容器的某些子类指定特殊的BeanPost事件处理器
postProcessBeanFactory(beanFactory);
//调用所有注册的BeanFactoryPostProcessor的Bean
invokeBeanFactoryPostProcessors(beanFactory);
//为BeanFactory注册BeanPost事件处理器.
//BeanPostProcessor是Bean后置处理器,用于监听容器触发的事件
registerBeanPostProcessors(beanFactory);
//初始化信息源,和国际化相关.
initMessageSource();
//初始化容器事件传播器.
initApplicationEventMulticaster();
//调用子类的某些特殊Bean初始化方法
onRefresh();
//为事件传播器注册事件监听器.
registerListeners();
//初始化所有剩余的单态Bean.
finishBeanFactoryInitialization(beanFactory);
//初始化容器的生命周期事件处理器,并发布容器的生命周期事件
finishRefresh();
}
catch (BeansException ex) {
//销毁以创建的单态Bean
destroyBeans();
//取消refresh操作,重置容器的同步标识.
cancelRefresh(ex);
throw ex;
}
}
}
protected ConfigurableListableBeanFactory obtainFreshBeanFactory() {
//这里使用了委派设计模式,父类定义了抽象的refreshBeanFactory()方法,具体实现调用子类容器的refreshBeanFactory()方法
refreshBeanFactory();
ConfigurableListableBeanFactory beanFactory = getBeanFactory();
if (logger.isDebugEnabled()) {
logger.debug("Bean factory for " + getDisplayName() + ": " + beanFactory);
}
return beanFactory;
}
protected final void refreshBeanFactory() throws BeansException {
if (hasBeanFactory()) {//如果已经有容器,销毁容器中的bean,关闭容器
destroyBeans();
closeBeanFactory();
}
try {
//创建IoC容器
DefaultListableBeanFactory beanFactory = createBeanFactory();
beanFactory.setSerializationId(getId());
//对IoC容器进行定制化,如设置启动参数,开启注解的自动装配等
customizeBeanFactory(beanFactory);
//调用载入Bean定义的方法,主要这里又使用了一个委派模式,在当前类中只定义了抽象的loadBeanDefinitions方法,具体的实现调用子类容器
loadBeanDefinitions(beanFactory);
synchronized (this.beanFactoryMonitor) {
this.beanFactory = beanFactory;
}
}
catch (IOException ex) {
throw new ApplicationContextException("I/O error parsing bean definition source for " + getDisplayName(), ex);
}
}
6.2 载入
loadBeanDefinitions方法同样是抽象方法,是由其子类实现的,也即在AbstractXmlApplicationContext中。
public abstract class AbstractXmlApplicationContext extends AbstractRefreshableConfigApplicationContext {
……
//实现父类抽象的载入Bean定义方法
@Override
protected void loadBeanDefinitions(DefaultListableBeanFactory beanFactory) throws BeansException, IOException {
//创建XmlBeanDefinitionReader,即创建Bean读取器,并通过回调设置到容器中去,容 器使用该读取器读取Bean定义资源
XmlBeanDefinitionReader beanDefinitionReader = new XmlBeanDefinitionReader(beanFactory);
//为Bean读取器设置Spring资源加载器,AbstractXmlApplicationContext的
//祖先父类AbstractApplicationContext继承DefaultResourceLoader,因此,容器本身也是一个资源加载器
beanDefinitionReader.setResourceLoader(this);
//为Bean读取器设置SAX xml解析器
beanDefinitionReader.setEntityResolver(new ResourceEntityResolver(this));
//当Bean读取器读取Bean定义的Xml资源文件时,启用Xml的校验机制
initBeanDefinitionReader(beanDefinitionReader);
//Bean读取器真正实现加载的方法
loadBeanDefinitions(beanDefinitionReader);
}
//Xml Bean读取器加载Bean定义资源
protected void loadBeanDefinitions(XmlBeanDefinitionReader reader) throws BeansException, IOException {
//获取Bean定义资源的定位
Resource[] configResources = getConfigResources();
if (configResources != null) {
//Xml Bean读取器调用其父类AbstractBeanDefinitionReader读取定位
//的Bean定义资源
reader.loadBeanDefinitions(configResources);
}
//如果子类中获取的Bean定义资源定位为空,则获取FileSystemXmlApplicationContext构造方法中setConfigLocations方法设置的资源
String[] configLocations = getConfigLocations();
if (configLocations != null) {
//Xml Bean读取器调用其父类AbstractBeanDefinitionReader读取定位
//的Bean定义资源
reader.loadBeanDefinitions(configLocations);
}
}
//这里又使用了一个委托模式,调用子类的获取Bean定义资源定位的方法
//该方法在ClassPathXmlApplicationContext中进行实现,对于我们
//举例分析源码的FileSystemXmlApplicationContext没有使用该方法
protected Resource[] getConfigResources() {
return null;
} ……
}
XmlBeanDefinitionReader加载Bean定义资源:通过源码分析,载入Bean定义资源文件的最后一步是将Bean定义资源转换为Document对象,该过程由documentLoader实现。
Bean定义资源的载入解析分为以下两个过程:
首先,通过调用XML解析器将Bean定义资源文件转换得到Document对象,但是这些Document对象并没有按照Spring的Bean规则进行解析。这一步是载入的过程
其次,在完成通用的XML解析之后,按照Spring的Bean规则对Document对象进行解析。
按照Spring的Bean规则对Document对象解析的过程是在接口BeanDefinitionDocumentReader的实现类DefaultBeanDefinitionDocumentReader中实现的。
BeanDefinitionParserDelegate解析Bean定义资源文件中的<Bean>元素。
6.3 注册
解析过后的BeanDefinition在IoC容器中的注册
//将解析的BeanDefinitionHold注册到容器中
public static void registerBeanDefinition(BeanDefinitionHolder definitionHolder, BeanDefinitionRegistry registry)
throws BeanDefinitionStoreException {
//获取解析的BeanDefinition的名称
String beanName = definitionHolder.getBeanName();
//向IoC容器注册BeanDefinition
registry.registerBeanDefinition(beanName, definitionHolder.getBeanDefinition());
//如果解析的BeanDefinition有别名,向容器为其注册别名
String[] aliases = definitionHolder.getAliases();
if (aliases != null) {
for (String aliase : aliases) {
registry.registerAlias(beanName, aliase);
}
}
}
当调用BeanDefinitionReaderUtils向IoC容器注册解析的BeanDefinition时,真正完成注册功能的是DefaultListableBeanFactory。DefaultListableBeanFactory中使用一个HashMap的集合对象存放IoC容器中注册解析的BeanDefinition,向IoC容器注册的主要源码如下:
//存储注册的俄BeanDefinition
private final Map<String, BeanDefinition> beanDefinitionMap = new ConcurrentHashMap<String, BeanDefinition>();
//向IoC容器注册解析的BeanDefiniton
public void registerBeanDefinition(String beanName, BeanDefinition beanDefinition)
throws BeanDefinitionStoreException {
Assert.hasText(beanName, "Bean name must not be empty");
Assert.notNull(beanDefinition, "BeanDefinition must not be null");
//校验解析的BeanDefiniton
if (beanDefinition instanceof AbstractBeanDefinition) {
try {
((AbstractBeanDefinition) beanDefinition).validate();
}
catch (BeanDefinitionValidationException ex) {
throw new BeanDefinitionStoreException(beanDefinition.getResourceDescription(), beanName,
"Validation of bean definition failed", ex);
}
}
//注册的过程中需要线程同步,以保证数据的一致性
synchronized (this.beanDefinitionMap) {
Object oldBeanDefinition = this.beanDefinitionMap.get(beanName);
//检查是否有同名的BeanDefinition已经在IoC容器中注册,如果已经注册,
//并且不允许覆盖已注册的Bean,则抛出注册失败异常
if (oldBeanDefinition != null) {
if (!this.allowBeanDefinitionOverriding) {
throw new BeanDefinitionStoreException(beanDefinition.getResourceDescription(), beanName,
"Cannot register bean definition [" + beanDefinition + "] for bean '" + beanName +
"': There is already [" + oldBeanDefinition + "] bound.");
}
else {//如果允许覆盖,则同名的Bean,后注册的覆盖先注册的
if (this.logger.isInfoEnabled()) {
this.logger.info("Overriding bean definition for bean '" + beanName +
"': replacing [" + oldBeanDefinition + "] with [" + beanDefinition + "]");
}
}
}
//IoC容器中没有已经注册同名的Bean,按正常注册流程注册
else {
this.beanDefinitionNames.add(beanName);
this.frozenBeanDefinitionNames = null;
}
this.beanDefinitionMap.put(beanName, beanDefinition);
//重置所有已经注册过的BeanDefinition的缓存
resetBeanDefinition(beanName);
}
}
至此,Bean定义资源文件中配置的Bean被解析过后,已经注册到IoC容器中,被容器管理起来,真正完成了IoC容器初始化所做的全部工作。现 在IoC容器中已经建立了整个Bean的配置信息,这些BeanDefinition信息已经可以使用,并且可以被检索,IoC容器的作用就是对这些注册的Bean定义信息进行处理和维护。这些的注册的Bean定义信息是IoC容器控制反转的基础,正是有了这些注册的数据,容器才可以进行依赖注入。
现在通过上面的代码,总结一下IOC容器初始化的基本步骤:
1. 初始化的入口在容器实现中的 refresh()调用来完成
2. 对 bean 定义载入 IOC 容器使用的方法是 loadBeanDefinition,其中的大致过程如下:
2.1 通过 ResourceLoader来完成资源文件位置的定位,DefaultResourceLoader 是默认的实现,同时上下文本身就给出了 ResourceLoader 的实现,可以从类路径,文件系统, URL 等方式来定为资源位置。如果是 XmlBeanFactory作为 IOC 容器,那么需要为它指定 bean 定义的资源,也就是说 bean 定义文件时通过抽象成 Resource 来被 IOC 容器处理的,
2.2 容器通过 BeanDefinitionReader来完成定义信息的解析和 Bean 信息的注册,往往使用的是XmlBeanDefinitionReader 来解析 bean 的 xml 定义文件 - 实际的处理过程是委托给 BeanDefinitionParserDelegate 来完成的,从而得到 bean 的定义信息,这些信息在 Spring 中使用 BeanDefinition 对象来表示 - 这个名字可以让我们想到loadBeanDefinition,RegisterBeanDefinition 这些相关的方法 - 他们都是为处理 BeanDefinitin 服务的,
2.3 容器解析得到 BeanDefinitionIoC 以后,需要把它在 IOC 容器中注册,这由 IOC 实现 BeanDefinitionRegistry 接口来实现。注册过程就是在 IOC 容器内部维护的一个HashMap 来保存得到的 BeanDefinition 的过程。这个 HashMap 是 IoC 容器持有 bean 信息的场所,以后对 bean 的操作都是围绕这个HashMap 来实现的.
3. 然后我们就可以通过 BeanFactory 和 ApplicationContext 来享受到 Spring IOC 的服务了,在使用 IOC 容器的时候,我们注意到除了少量粘合代码,绝大多数以正确 IoC 风格编写的应用程序代码完全不用关心如何到达工厂,因为容器将把这些对象与容器管理的其他对象钩在一起。基本的策略是把工厂放到已知的地方,最好是放在对预期使用的上下文有意义的地方,以及代码将实际需要访问工厂的地方。 Spring 本身提供了对声明式载入 web 应用程序用法的应用程序上下文,并将其存储在ServletContext 中的框架实现。
上面步骤简记:
1.把配置xml文件转换成resource。resource的转换是先通过ResourcePatternResolver来解析可识别格式的配置文件的路径(如"classpath*:"等),如果没有指定格式,默认会按照类路径的资源来处理。
2.利用XmlBeanDefinitionReader完成对xml的解析,将xml Resource里定义的bean对象转换成统一的BeanDefinition。
3.将BeanDefinition注册到BeanFactory,完成对BeanFactory的初始化。BeanFactory里将会维护一个BeanDefinition的Map。
在使用 Spring IOC 容器的时候我们还需要区别两个概念:Beanfactory 和 Factory bean,
BeanFactory: 指的是IOC容器的编程抽象,比如 ApplicationContext,XmlBeanFactory等,这些都是 IOC 容器的具体表现,需要使用什么样的容器由客户决定,但 Spring 为我们提供了丰富的选择。
FactoryBean: 只是一个可以在IOC而容器中被管理的一个 bean,是对各种处理过程和资源使用的抽象,Factory bean 在需要时产生另一个对象,而不返回FactoryBean本身,我们可以把它看成是一个抽象工厂,对它的调用返回的是工厂生产的产品。所有的 Factory bean 都实现特殊的org.springframework.beans.factory.FactoryBean 接口,当使用容器中 factory bean 的时候,该容器不会返回 factory bean 本身,而是返回其生成的对象。Spring 包括了大部分的通用资源和服务访问抽象的 Factory bean 的实现,其中包括:对 JNDI 查询的处理,对代理对象的处理,对事务性代理的处理,对 RMI 代理的处理等,这些我们都可以看成是具体的工厂,看成是SPRING 为我们建立好的工厂。也就是说 Spring通过使用抽象工厂模式为我们准备了一系列工厂来生产一些特定的对象,免除我们手工重复的工作,我们要使用时只需要在 IOC 容器里配置好就能很方便的使用了。
7、IOC容器的依赖注入(用户从桶中取水)
1、依赖注入发生的时间
当Spring IoC容器完成了Bean定义资源的定位、载入和解析注册以后,IoC容器中已经管理类Bean定义的相关数据,但是此时IoC容器还没有对所管理的Bean进行依赖注入,依赖注入在以下两种情况发生:
(1).用户第一次通过getBean方法向IoC容索要Bean时,IoC容器触发依赖注入。
(2).当用户在Bean定义资源中为<Bean>元素配置了lazy-init属性,即让容器在解析注册Bean定义时进行预实例化,触发依赖注入。
BeanFactory接口中定义了几个getBean方法,就是用户向IoC容器索取管理的Bean的方法,我们通过分析其子类的具体实现,理解Spring IoC容器在用户索取Bean时如何完成依赖注入。
AbstractBeanFactory的getBean相关方法的源码如下:
//获取IoC容器中指定名称的Bean
public Object getBean(String name) throws BeansException {
//doGetBean才是真正向IoC容器获取被管理Bean的过程
return doGetBean(name, null, null, false);
}
//获取IoC容器中指定名称和类型的Bean
public <T> T getBean(String name, Class<T> requiredType) throws BeansException {
//doGetBean才是真正向IoC容器获取被管理Bean的过程
return doGetBean(name, requiredType, null, false);
}
//获取IoC容器中指定名称和参数的Bean
public Object getBean(String name, Object... args) throws BeansException {
//doGetBean才是真正向IoC容器获取被管理Bean的过程
return doGetBean(name, null, args, false);
}
//获取IoC容器中指定名称、类型和参数的Bean
public <T> T getBean(String name, Class<T> requiredType, Object... args) throws BeansException {
//doGetBean才是真正向IoC容器获取被管理Bean的过程
return doGetBean(name, requiredType, args, false);
}
//真正实现向IoC容器获取Bean的功能,也是触发依赖注入功能的地方
@SuppressWarnings("unchecked")
protected <T> T doGetBean(
final String name, final Class<T> requiredType, final Object[] args, boolean typeCheckOnly)
throws BeansException {
//根据指定的名称获取被管理Bean的名称,剥离指定名称中对容器的相关依赖
//如果指定的是别名,将别名转换为规范的Bean名称
final String beanName = transformedBeanName(name);
Object bean;
//先从缓存中取是否已经有被创建过的单态类型的Bean,对于单态模式的Bean整
//个IoC容器中只创建一次,不需要重复创建
Object sharedInstance = getSingleton(beanName);
//IoC容器创建单态模式Bean实例对象
if (sharedInstance != null && args == null) {
if (logger.isDebugEnabled()) {
//如果指定名称的Bean在容器中已有单态模式的Bean被创建,直接返回
//已经创建的Bean
if (isSingletonCurrentlyInCreation(beanName)) {
logger.debug("Returning eagerly cached instance of singleton bean '" + beanName +
"' that is not fully initialized yet - a consequence of a circular reference");
}
else {
logger.debug("Returning cached instance of singleton bean '" + beanName + "'");
}
}
//获取给定Bean的实例对象,主要是完成FactoryBean的相关处理
//注意:BeanFactory是管理容器中Bean的工厂,而FactoryBean是
//创建创建对象的工厂Bean,两者之间有区别
bean = getObjectForBeanInstance(sharedInstance, name, beanName, null);
}
else {//缓存没有正在创建的单态模式Bean
//缓存中已经有已经创建的原型模式Bean,但是由于循环引用的问题导致实
//例化对象失败
if (isPrototypeCurrentlyInCreation(beanName)) {
throw new BeanCurrentlyInCreationException(beanName);
}
//对IoC容器中是否存在指定名称的BeanDefinition进行检查,首先检查是否
//能在当前的BeanFactory中获取的所需要的Bean,如果不能则委托当前容器
//的父级容器去查找,如果还是找不到则沿着容器的继承体系向父级容器查找
BeanFactory parentBeanFactory = getParentBeanFactory();
//当前容器的父级容器存在,且当前容器中不存在指定名称的Bean
if (parentBeanFactory != null && !containsBeanDefinition(beanName)) {
//解析指定Bean名称的原始名称
String nameToLookup = originalBeanName(name);
if (args != null) {
//委派父级容器根据指定名称和显式的参数查找
return (T) parentBeanFactory.getBean(nameToLookup, args);
}
else {
//委派父级容器根据指定名称和类型查找
return parentBeanFactory.getBean(nameToLookup, requiredType);
}
}
//创建的Bean是否需要进行类型验证,一般不需要
if (!typeCheckOnly) {
//向容器标记指定的Bean已经被创建
markBeanAsCreated(beanName);
}
//根据指定Bean名称获取其父级的Bean定义,主要解决Bean继承时子类
//合并父类公共属性问题
final RootBeanDefinition mbd = getMergedLocalBeanDefinition(beanName);
checkMergedBeanDefinition(mbd, beanName, args);
//获取当前Bean所有依赖Bean的名称
String[] dependsOn = mbd.getDependsOn();
//如果当前Bean有依赖Bean
if (dependsOn != null) {
for (String dependsOnBean : dependsOn) {
//递归调用getBean方法,获取当前Bean的依赖Bean
getBean(dependsOnBean);
//把被依赖Bean注册给当前依赖的Bean
registerDependentBean(dependsOnBean, beanName);
}
}
//创建单态模式Bean的实例对象
if (mbd.isSingleton()) {
//这里使用了一个匿名内部类,创建Bean实例对象,并且注册给所依赖的对象
sharedInstance = getSingleton(beanName, new ObjectFactory() {
public Object getObject() throws BeansException {
try {
//创建一个指定Bean实例对象,如果有父级继承,则合并子//类和父类的定义
return createBean(beanName, mbd, args);
}
catch (BeansException ex) {
//显式地从容器单态模式Bean缓存中清除实例对象
destroySingleton(beanName);
throw ex;
}
}
});
//获取给定Bean的实例对象
bean = getObjectForBeanInstance(sharedInstance, name, beanName, mbd);
}
//IoC容器创建原型模式Bean实例对象
else if (mbd.isPrototype()) {
//原型模式(Prototype)是每次都会创建一个新的对象
Object prototypeInstance = null;
try {
//回调beforePrototypeCreation方法,默认的功能是注册当前创//建的原型对象
beforePrototypeCreation(beanName);
//创建指定Bean对象实例
prototypeInstance = createBean(beanName, mbd, args);
}
finally {
//回调afterPrototypeCreation方法,默认的功能告诉IoC容器指//定Bean的原型对象不再创建了
afterPrototypeCreation(beanName);
}
//获取给定Bean的实例对象
bean = getObjectForBeanInstance(prototypeInstance, name, beanName, mbd);
}
//要创建的Bean既不是单态模式,也不是原型模式,则根据Bean定义资源中
//配置的生命周期范围,选择实例化Bean的合适方法,这种在Web应用程序中
//比较常用,如:request、session、application等生命周期
else {
String scopeName = mbd.getScope();
final Scope scope = this.scopes.get(scopeName);
//Bean定义资源中没有配置生命周期范围,则Bean定义不合法
if (scope == null) {
throw new IllegalStateException("No Scope registered for scope '" + scopeName + "'");
}
try {
//这里又使用了一个匿名内部类,获取一个指定生命周期范围的实例
Object scopedInstance = scope.get(beanName, new ObjectFactory() {
public Object getObject() throws BeansException {
beforePrototypeCreation(beanName);
try {
return createBean(beanName, mbd, args);
}
finally {
afterPrototypeCreation(beanName);
}
}
});
//获取给定Bean的实例对象
bean = getObjectForBeanInstance(scopedInstance, name, beanName, mbd);
}
catch (IllegalStateException ex) {
throw new BeanCreationException(beanName,
"Scope '" + scopeName + "' is not active for the current thread; " +
"consider defining a scoped proxy for this bean if you intend to refer to it from a singleton",
ex);
}
}
}
//对创建的Bean实例对象进行类型检查
if (requiredType != null && bean != null && !requiredType.isAssignableFrom(bean.getClass())) {
throw new BeanNotOfRequiredTypeException(name, requiredType, bean.getClass());
}
return (T) bean;
}
通过上面对向IoC容器获取Bean方法的分析,我们可以看到在Spring中,如果Bean定义的单态模式(Singleton),则容器在创建之前先从缓存中查找,以确保整个容器中只存在一个实例对象。如果Bean定义的是原型模式(Prototype),则容器每次都会创建一个新的实例对象。
AbstractAutowireCapableBeanFactory类实现了ObejctFactory接口,创建容器指定的Bean实例对象,同时还对创建的Bean实例对象进行初始化处理。
通过对方法源码的分析,我们看到具体的依赖注入实现在以下两个方法中:
(1).createBeanInstance:生成Bean所包含的java对象实例。
(2).populateBean :对Bean属性的依赖注入进行处理。
createBeanInstance:方法创建Bean的java实例对象:在createBeanInstance方法中,根据指定的初始化策略,使用静态工厂、工厂方法或者容器的自动装配特性生成java实例对象,如果Bean有方法被覆盖了,则使用JDK的反射机制进行实例化,否则,使用CGLIB进行实例化。
CGLIB是一个常用的字节码生成器的类库,它提供了一系列API实现java字节码的生成和转换功能。我们在学习JDK的动态代理时都知道,JDK的动态代理只能针对接口,如果一个类没有实现任何接口,要对其进行动态代理只能使用CGLIB。
populateBean:方法对Bean属性的依赖注入:
对属性的注入过程分以下两种情况:
(1).属性值类型不需要转换时,不需要解析属性值,直接准备进行依赖注入。
(2).属性值需要进行类型转换时,如对其他对象的引用等,首先需要解析属性值,然后对解析后的属性值进行依赖注入。
通过对注入依赖代码的分析,我们已经明白了Spring IoC容器是如何将属性的值注入到Bean实例对象中去的:
(1).对于集合类型的属性,将其属性值解析为目标类型的集合后直接赋值给属性。
(2).对于非集合类型的属性,大量使用了JDK的反射和内省机制,通过属性的getter方法(reader method)获取指定属性注入以前的值,同时调用属性的setter方法(writer method)为属性设置注入后的值。
至此Spring IoC容器对Bean定义资源文件的定位,载入、解析和依赖注入已经全部分析完毕,现在Spring IoC容器中管理了一系列靠依赖关系联系起来的Bean,程序不需要应用自己手动创建所需的对象,Spring IoC容器会在我们使用的时候自动为我们创建,并且为我们注入好相关的依赖,这就是Spring核心功能的控制反转和依赖注入的相关功能。
参考来源:
本文深入探讨了Spring IoC容器的工作原理,包括对象创建、依赖注入的过程,以及容器内部的实现机制。重点分析了BeanFactory、ApplicationContext、BeanDefinition、Resource等关键组件,展示了容器如何通过解析配置文件、注册BeanDefinition、执行依赖注入来实现控制反转与依赖注入的核心功能。
2854

被折叠的 条评论
为什么被折叠?



