CSE444: Database Systems Internals notes4

本文探讨了数据库内部如何高效地执行SQL查询,包括物理查询计划的生成、操作符算法的设计,以及查询优化的自动选择过程。重点讲解了内存管理、成本参数、以及常见的连接算法如哈希连接、嵌套循环连接和排序-合并连接。

整理自CSE 444 Database Internals, Spring 2019 的课程Lectures,课程地址:https://courses.cs.washington.edu/courses/cse444/19sp/

 

Lecture 7 Query Execution and Operator Algorithms(part 1)


Next Lectures

How to answer queries efficiently!

  • Physical query plans and operator algorithms

How to automatically find good query plans

  • How to compute the cost of a complete plan
  • How to pick a good query plan for a query
  • i.e., Query optimization

Query Execution Bottom Line

SQL query transformed into physical plan

  • Access path selection for each relation
  • Implementation choice for each operator
  • Scheduling decisions for operators:Single-threaded or parallel, pipelined or with materialization, etc.

 

Execution of the physical plan is pull-based

Operators given a limited amount of memory

 

Pipelined Query Execution

Memory Management

Each operator:

Pre-allocates heap space for input/output tuples

  • Option 1: Array of pointers to base data in buffer pool
  • Option 2: New tuples on the heap

Allocates memory for its internal state

  • Either on heap or in buffer pool (depends on system)

 

DMBS limits how much memory each operator, or each query can use

 

Operator Algorithms

Design criteria

  • Cost: IO, CPU, Network
  • Memory utilization
  • Load balance (for parallel operators)

Cost Parameters

Cost = total number of I/Os

  • This is a simplification that ignores CPU, network

Parameters:

B(R) = # of blocks (i.e., pages) for relation R

T(R) = # of tuples in relation R

 V(R, a) = # of distinct values of attribute a

  • When a is a key, V(R,a) = T(R)
  • When a is not a key, V(R,a) can be anything < T(R)

Convention

Cost = the cost of reading operands from disk

Cost of writing the final result to disk is not included; need to count it separately when applicable

 

Join Algorithms

  • Hash join
  • Nested loop join
  • Sort-merge join

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进行实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值