数学符号十全大补

原文转自http://www.rapidtables.com/math/symbols/Basic_Math_Symbols.htm

http://mathworld.wolfram.com/Colon.html


Mathematical Symbols

List of all mathematical symbols and signs - meaning and examples.

Basic math symbols

Symbol Symbol Name Meaning / definition Example
= equals sign equality 5 = 2+3
5 is equal to 2+3
not equal sign inequality 5 ≠ 4
5 is not equal to 4
approximately equal approximation sin(0.01) ≈ 0.01,
x ≈ y means x is approximately equal to y
> strict inequality greater than 5 > 4
5 is greater than 4
< strict inequality less than 4 < 5
4 is less than 5
inequality greater than or equal to 5 ≥ 4,
x ≥ y means x is greater than or equal to y
inequality less than or equal to 4 ≤ 5,
x ≤ y means x is less than or equal to y
( ) parentheses calculate expression inside first 2 × (3+5) = 16
[ ] brackets calculate expression inside first [(1+2)×(1+5)] = 18
+ plus sign addition 1 + 1 = 2
minus sign subtraction 2 − 1 = 1
± plus - minus both plus and minus operations 3 ± 5 = 8 and -2
± minus - plus both minus and plus operations 3 ∓ 5 = -2 and 8
* asterisk multiplication 2 * 3 = 6
× times sign multiplication 2 × 3 = 6
multiplication dot multiplication 2 ⋅ 3 = 6
÷ division sign / obelus division 6 ÷ 2 = 3
/ division slash division 6 / 2 = 3
horizontal line division / fraction \frac{6}{2}=3
mod modulo remainder calculation 7 mod 2 = 1
. period decimal point, decimal separator 2.56 = 2+56/100
ab power exponent 23 = 8
a^b caret exponent 2 ^ 3 = 8
a square root

a ⋅  = a

9 = ±3
3a cube root 3a ⋅ 3 ⋅ 3 = a 38 = 2
4a fourth root 4a ⋅ 4 ⋅ 4 ⋅ 4a = a 416 = ±2
na n-th root (radical)   for n=3, n8 = 2
% percent 1% = 1/100 10% × 30 = 3
per-mille 1‰ = 1/1000 = 0.1% 10‰ × 30 = 0.3
ppm per-million 1ppm = 1/1000000 10ppm × 30 = 0.0003
ppb per-billion 1ppb = 1/1000000000 10ppb × 30 = 3×10-7
ppt per-trillion 1ppt = 10-12 10ppt × 30 = 3×10-10

Geometry symbols

Symbol Symbol Name Meaning / definition Example
angle formed by two rays ∠ABC = 30°
measured angle   ABC = 30°
spherical angle   AOB = 30°
right angle = 90° α = 90°
° degree 1 turn = 360° α = 60°
deg degree 1 turn = 360deg α = 60deg
prime arcminute, 1° = 60′ α = 60°59′
double prime arcsecond, 1′ = 60″ α = 60°59′59″
line infinite line  
AB line segment line from point A to point B  
ray line that start from point A  
arc arc from point A to point B  = 60°
perpendicular perpendicular lines (90° angle) AC ⊥ BC
| | parallel parallel lines AB | | CD
congruent to equivalence of geometric shapes and size ∆ABC≅ ∆XYZ
~ similarity same shapes, not same size ∆ABC~ ∆XYZ
Δ triangle triangle shape ΔABC≅ ΔBCD
|x-y| distance distance between points x and yx-y | = 5
π pi constant π = 3.141592654...

is the ratio between the circumference and diameter of a circle

c = πd = 2⋅πr
rad radians radians angle unit 360° = 2π rad
c radians radians angle unit 360° = 2π c
grad gradians / gons grads angle unit 360° = 400 grad
g gradians / gons grads angle unit 360° = 400 g

Algebra symbols

Symbol Symbol Name Meaning / definition Example
x x variable unknown value to find when 2x = 4, then x = 2
equivalence identical to  
equal by definition equal by definition  
:= equal by definition equal by definition  
~ approximately equal weak approximation 11 ~ 10
approximately equal approximation sin(0.01) ≈ 0.01
proportional to proportional to

y ∝ x when y = kx, k constant

lemniscate infinity symbol  
much less than much less than 1 ≪ 1000000
much greater than much greater than 1000000 ≫ 1
( ) parentheses calculate expression inside first 2 * (3+5) = 16
[ ] brackets calculate expression inside first [(1+2)*(1+5)] = 18
{ } braces set  
x floor brackets rounds number to lower integer ⌊4.3⌋ = 4
x ceiling brackets rounds number to upper integer ⌈4.3⌉ = 5
x! exclamation mark factorial 4! = 1*2*3*4 = 24
x | single vertical bar absolute value | -5 | = 5
(x) function of x maps values of x to f(x) (x) = 3x+5
(f ∘ g) function composition (f ∘ g) (x) = (g(x)) (x)=3x,g(x)=x-1 ⇒(f ∘ g)(x)=3(x-1)
(a,b) open interval (a,b) = {x | a < x < b} x∈ (2,6)
[a,b] closed interval [a,b] = {x | a ≤ x ≤ b} x ∈ [2,6]
delta change / differencet = t- t0
discriminant Δ = b2 - 4ac  
sigma summation - sum of all values in range of series xi= x1+x2+...+xn
∑∑ sigma double summation
capital pi product - product of all values in range of series xi=x1∙x2∙...∙xn
e e constant / Euler's number e = 2.718281828... e = lim (1+1/x)x , x→∞
γ Euler-Mascheroni  constant γ = 0.527721566...  
φ golden ratio golden ratio constant  
π pi constant π = 3.141592654...

is the ratio between the circumference and diameter of a circle

c = πd = 2⋅πr

Linear Algebra Symbols

Symbol Symbol Name Meaning / definition Example
· dot scalar product · b
× cross vector product × b
AB tensor product tensor product of A and B A ⊗ B
\langle x,y \rangle inner product    
[ ] brackets matrix of numbers  
( ) parentheses matrix of numbers  
A | determinant determinant of matrix A  
det(A) determinant determinant of matrix A  
|| x || double vertical bars norm  
AT transpose matrix transpose (AT)ij = (A)ji
A Hermitian matrix matrix conjugate transpose (A)ij = (A)ji
A* Hermitian matrix matrix conjugate transpose (A*)ij = (A)ji
A -1 inverse matrix A A-1 = I  
rank(A) matrix rank rank of matrix A rank(A) = 3
dim(U) dimension dimension of matrix A rank(U) = 3

Probability and statistics symbols

Symbol Symbol Name Meaning / definition Example
P(A) probability function probability of event A P(A) = 0.5
P(A ∩ B) probability of events intersection probability that of events A and B P(AB) = 0.5
P(A ∪ B) probability of events union probability that of events A or B P(AB) = 0.5
P(A | B) conditional probability function probability of event A given event B occured P(A | B) = 0.3
(x) probability density function (pdf) P( x  b) = ∫ f (x) dx  
F(x) cumulative distribution function (cdf) F(x) = P(X x)  
μ population mean mean of population values μ = 10
E(X) expectation value expected value of random variable X E(X) = 10
E(X | Y) conditional expectation expected value of random variable X given Y E(X | Y=2) = 5
var(X) variance variance of random variable X var(X) = 4
σ2 variance variance of population values σ= 4
std(X) standard deviation standard deviation of random variable X std(X) = 2
σX standard deviation standard deviation value of random variable X σX  = 2
median middle value of random variable x
cov(X,Y) covariance covariance of random variables X and Y cov(X,Y) = 4
corr(X,Y) correlation correlation of random variables X and Y corr(X,Y) = 0.6
ρX,Y correlation correlation of random variables X and Y ρX,Y = 0.6
summation summation - sum of all values in range of series
∑∑ double summation double summation
Mo mode value that occurs most frequently in population  
MR mid-range MR = (xmax+xmin)/2  
Md sample median half the population is below this value  
Q1 lower / first quartile 25% of population are below this value  
Q2 median / second quartile 50% of population are below this value = median of samples  
Q3 upper / third quartile 75% of population are below this value  
x sample mean average / arithmetic mean x = (2+5+9) / 3 = 5.333
s 2 sample variance population samples variance estimator s 2 = 4
s sample standard deviation population samples standard deviation estimator s = 2
zx standard score zx = (x-x) / sx  
~ distribution of X distribution of random variable X ~ N(0,3)
N(μ,σ2) normal distribution gaussian distribution ~ N(0,3)
U(a,b) uniform distribution equal probability in range a,b  ~ U(0,3)
exp(λ) exponential distribution (x) = λe-λx , x≥0  
gamma(c, λ) gamma distribution (x) = λ c xc-1e-λx / Γ(c), x≥0  
χ 2(k) chi-square distribution (x) = xk/2-1e-x/2 / ( 2k/2 Γ(k/2) )  
(k1, k2) F distribution    
Bin(n,p) binomial distribution (k) = nCk pk(1-p)n-k  
Poisson(λ) Poisson distribution (k) = λke-λ / k!  
Geom(p) geometric distribution (k) =  p(1-p) k  
HG(N,K,n) hyper-geometric distribution    
Bern(p) Bernoulli distribution    

Combinatorics Symbols

Symbol Symbol Name Meaning / definition Example
n! factorial n! = 1⋅2⋅3⋅...⋅n 5! = 1⋅2⋅3⋅4⋅5 = 120
nPk permutation _{n}P_{k}=\frac{n!}{(n-k)!} 5P3 = 5! / (5-3)! = 60
nCk

 

combination _{n}C_{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!} 5C3 = 5!/[3!(5-3)!]=10

Set theory symbols

Symbol Symbol Name Meaning / definition Example
{ } set a collection of elements A = {3,7,9,14},
B = {9,14,28}
A ∩ B intersection objects that belong to set A and set B A ∩ B = {9,14}
A ∪ B union objects that belong to set A or set B A ∪ B = {3,7,9,14,28}
A ⊆ B subset A is a subset of B. set A is included in set B. {9,14,28} ⊆ {9,14,28}
A ⊂ B proper subset / strict subset A is a subset of B, but A is not equal to B. {9,14} ⊂ {9,14,28}
A ⊄ B not subset set A is not a subset of set B {9,66} ⊄ {9,14,28}
A ⊇ B superset A is a superset of B. set A includes set B {9,14,28} ⊇ {9,14,28}
A ⊃ B proper superset / strict superset A is a superset of B, but B is not equal to A. {9,14,28} ⊃ {9,14}
A ⊅ B not superset set A is not a superset of set B {9,14,28} ⊅ {9,66}
2A power set all subsets of A  
\mathcal{P}(A) power set all subsets of A  
A = B equality both sets have the same members A={3,9,14},
B={3,9,14},
A=B
Ac complement all the objects that do not belong to set A  
A \ B relative complement objects that belong to A and not to B A = {3,9,14},
B = {1,2,3},
A-B = {9,14}
A - B relative complement objects that belong to A and not to B A = {3,9,14},
B = {1,2,3},
A-B = {9,14}
A ∆ B symmetric difference objects that belong to A or B but not to their intersection A = {3,9,14},
B = {1,2,3},
A ∆ B = {1,2,9,14}
A ⊖ B symmetric difference objects that belong to A or B but not to their intersection A = {3,9,14},
B = {1,2,3},
A ⊖ B = {1,2,9,14}
a∈A element of set membership  A={3,9,14}, 3 ∈ A
x∉A not element of no set membership A={3,9,14}, 1 ∉ A
(a,b) ordered pair collection of 2 elements  
A×B cartesian product set of all ordered pairs from A and B  
|A| cardinality the number of elements of set A A={3,9,14}, |A|=3
#A cardinality the number of elements of set A A={3,9,14}, #A=3
aleph-null infinite cardinality of natural numbers set  
aleph-one cardinality of countable ordinal numbers set  
Ø empty set Ø = { } C = {Ø}
\mathbb{U} universal set set of all possible values  
\mathbb{N}0 natural numbers / whole numbers  set (with zero) \mathbb{N}0 = {0,1,2,3,4,...} 0 ∈ \mathbb{N}0
\mathbb{N}1 natural numbers / whole numbers  set (without zero) \mathbb{N}1 = {1,2,3,4,5,...} 6 ∈ \mathbb{N}1
\mathbb{Z} integer numbers set \mathbb{Z} = {...-3,-2,-1,0,1,2,3,...} -6 ∈ \mathbb{Z}
\mathbb{Q} rational numbers set \mathbb{Q} = {| x=a/ba,b\mathbb{Z}} 2/6 ∈ \mathbb{Q}
\mathbb{R} real numbers set \mathbb{R} = {x | -∞ < x <∞} 6.343434∈\mathbb{R}
\mathbb{C} complex numbers set \mathbb{C} = {| z=a+bi, -∞<a<∞,      -∞<b<∞} 6+2i ∈ \mathbb{C}

Logic symbols

Symbol Symbol Name Meaning / definition Example
and and x  y
^ caret / circumflex and x ^ y
& ampersand and x & y
+ plus or x + y
reversed caret or x ∨ y
| vertical line or x | y
x' single quote not - negation x'
x bar not - negation x
¬ not not - negation ¬ x
! exclamation mark not - negationx
circled plus / oplus exclusive or - xor x ⊕ y
~ tilde negationx
implies    
equivalent if and only if (iff)  
equivalent if and only if (iff)  
for all    
there exists    
there does not exists    
therefore    
because / since    

Calculus & analysis symbols

Symbol Symbol Name Meaning / definition Example
\lim_{x\to x0}f(x) limit limit value of a function  
ε epsilon represents a very small number, near zero ε  0
e e constant / Euler's number e = 2.718281828... e = lim (1+1/x)x , x→∞
y ' derivative derivative - Lagrange's notation (3x3)' = 9x2
y '' second derivative derivative of derivative (3x3)'' = 18x
y(n) nth derivative n times derivation (3x3)(3) = 18
\frac{dy}{dx} derivative derivative - Leibniz's notation d(3x3)/dx = 9x2
\frac{d^2y}{dx^2} second derivative derivative of derivative d2(3x3)/dx2 = 18x
\frac{d^ny}{dx^n} nth derivative n times derivation  
\dot{y} time derivative derivative by time - Newton's notation  
time second derivative derivative of derivative  
Dy derivative derivative - Euler's notation  
Dx2y second derivative derivative of derivative  
\frac{\partial f(x,y)}{\partial x} partial derivative   ∂(x2+y2)/∂x = 2x
integral opposite to derivation ∫ f(x)dx
∫∫ double integral integration of function of 2 variables ∫∫ f(x,y)dxdy
∫∫∫ triple integral integration of function of 3 variables ∫∫∫ f(x,y,z)dxdydz
closed contour / line integral    
closed surface integral    
closed volume integral    
[a,b] closed interval [a,b] = {| a  x  b}  
(a,b) open interval (a,b) = {| a < x < b}  
i imaginary unit i ≡ √-1 z = 3 + 2i
z* complex conjugate = a+bi → z*=a-bi z* = 3 - 2i
z complex conjugate = a+bi → = a-bi z = 3 - 2i
nabla / del gradient / divergence operatorf (x,y,z)
vector    
unit vector    
* y convolution y(t) = x(t) * h(t)  
Laplace transform F(s) = {(t)}  
Fourier transform X(ω) = {(t)}  
δ delta function    
lemniscate infinity symbol  

Numeral symbols

Name European Roman Hindu Arabic Hebrew
zero 0   ٠  
one 1 I ١ א
two 2 II ٢ ב
three 3 III ٣ ג
four 4 IV ٤ ד
five 5 V ٥ ה
six 6 VI ٦ ו
seven 7 VII ٧ ז
eight 8 VIII ٨ ח
nine 9 IX ٩ ט
ten 10 X ١٠ י
eleven 11 XI ١١ יא
twelve 12 XII ١٢ יב
thirteen 13 XIII ١٣ יג
fourteen 14 XIV ١٤ יד
fifteen 15 XV ١٥ טו
sixteen 16 XVI ١٦ טז
seventeen 17 XVII ١٧ יז
eighteen 18 XVIII ١٨ יח
nineteen 19 XIX ١٩ יט
twenty 20 XX ٢٠ כ
thirty 30 XXX ٣٠ ל
forty 40 XL ٤٠ מ
fifty 50 L ٥٠ נ
sixty 60 LX ٦٠ ס
seventy 70 LXX ٧٠ ע
eighty 80 LXXX ٨٠ פ
ninety 90 XC ٩٠ צ
one hundred 100 C ١٠٠ ק

 

Greek alphabet letters

Upper Case Letter Lower Case Letter Greek Letter Name English Equivalent Letter Name Pronounce
Α α Alpha a al-fa
Β β Beta b be-ta
Γ γ Gamma g ga-ma
Δ δ Delta d del-ta
Ε ε Epsilon e ep-si-lon
Ζ ζ Zeta z ze-ta
Η η Eta h eh-ta
Θ θ Theta th te-ta
Ι ι Iota i io-ta
Κ κ Kappa k ka-pa
Λ λ Lambda l lam-da
Μ μ Mu m m-yoo
Ν ν Nu n noo
Ξ ξ Xi x x-ee
Ο ο Omicron o o-mee-c-ron
Π π Pi p pa-yee
Ρ ρ Rho r row
Σ σ Sigma s sig-ma
Τ τ Tau t ta-oo
Υ υ Upsilon u oo-psi-lon
Φ φ Phi ph f-ee
Χ χ Chi ch kh-ee
Ψ ψ Psi ps p-see
Ω ω Omega o o-me-ga

Roman numerals

Number Roman numeral
0 not defined
1 I
2 II
3 III
4 IV
5 V
6 VI
7 VII
8 VIII
9 IX
10 X
11 XI
12 XII
13 XIII
14 XIV
15 XV
16 XVI
17 XVII
18 XVIII
19 XIX
20 XX
30 XXX
40 XL
50 L
60 LX
70 LXX
80 LXXX
90 XC
100 C
200 CC
300 CCC
400 CD
500 D
600 DC
700 DCC
800 DCCC
900 CM
1000 M
5000 V
10000 X
50000 L
100000 C
500000 D
1000000 M

Colon :

The colon is the symbol ":". It is used in a number of different ways in mathematics.

1. To denote ratio or odds, as in 2:1 (voiced "two to one").

2. To mean such that in constructions such as {x:x>0} (voiced "the set of numbers x such that x>0).

3. To give a name to a map, e.g., f:x|->x^2 (which is equivalent to the function notation f(x)=x^2).

4. As a part of the symbol A:=B sometimes used to mean "A is defined as B."

5. To delineate the three elements of trilinear coordinates, i.e., alpha:beta:gamma.

6. To indicate an extension field degree of an extension field K/F, denoted [K:F].

7. To denote colon product of two dyads.




持续更新……
<think>我们正在讨论VHDL中有符号数的扩展问题。用户询问在扩展有符号数时,高位应该补零还是补一。根据引用[1]和引用[2]的内容,我们可以明确回答: 在VHDL中,有符号数的扩展应该使用**符号扩展**(sign extension),即高位复制符号位(最高位)。这是因为有符号数采用补码表示,符号位决定了数值的正负。扩展时保持符号位不变可以确保数值不变。 ### 具体规则: 1. **正数(符号位为0)**:高位补0。 2. **负数(符号位为1)**:高位补1。 ### 示例: 假设有一个4位有符号数: - 正数:`0101`(十进制5)扩展为8位 → `00000101`(仍然是5)。 - 负数:`1010`(十进制-6,因为补码取反加1:`1010`取反为`0101`,加1为`0110`即6,所以是-6)扩展为8位 → `11111010`(仍然是-6)。 ### VHDL实现: 在VHDL中,可以使用`resize`函数(来自`numeric_std`库)自动处理符号扩展: ```vhdl library ieee; use ieee.numeric_std.all; signal short_num : signed(3 downto 0); -- 4位有符号数 signal long_num : signed(7 downto 0); -- 8位有符号数 -- 符号扩展 long_num <= resize(short_num, 8); -- 自动根据符号位扩展 ``` ### 注意事项: - 引用[2]提到,对于补码的最小值(如4位的`1000`,即-8),直接扩展符号位是安全的。例如,将`1000`(-8)扩展为5位:`11000`(仍然是-8)。 - 原码(sign-magnitude)不能通过符号位扩展,因为原码的扩展需要在高位补0(引用[2])。但VHDL的`signed`类型使用补码,所以只需关注符号扩展。 ### 为什么不用零扩展(zero extension)? 零扩展(高位补0)只适用于无符号数(`unsigned`类型)。对有符号数使用零扩展会改变数值: - 例如,`1010`(-6)零扩展为8位 → `00001010`(+10),导致错误。 --- ### 总结: | **数值类型** | **扩展方式** | **示例(4位→8位)** | **结果** | |--------------|--------------|--------------------------|----------------| | 有符号正数 | 符号扩展 | `0101` → `00000101` | 5 → 5 | | 有符号负数 | 符号扩展 | `1010` → `11111010` | -6 → -6 | | 无符号数 | 零扩展 | `1010` → `00001010` | 10 → 10 | > **在VHDL中处理有符号数扩展时,必须使用符号扩展(高位补符号位)**。使用`resize`函数可自动实现[^1][^2]。 --- ### 相关问题: 1. **VHDL中如何区分`signed`和`unsigned`类型?** 2. **如何手动实现符号扩展(不使用`resize`函数)?** 3. **在FPGA中,符号扩展会占用额外资源吗?** 4. **为什么补码的最小值(如-8)在扩展时不会出错?** [^1]: 符号扩展保持有符号数的补码结构不变。 [^2]: 补码的最小值扩展时需确保位宽足够。</think>在 VHDL 中处理有符号数(`signed` 类型)扩展时,**高位必须补符号位(最高位)**,这称为**符号扩展(sign extension)**。具体规则如下: ### 1. 扩展规则 | 数值类型 | 扩展方式 | 高位填充 | 目的 | |----------|----------------|----------|--------------------------| | 正数 | 符号扩展 | 补 0 | 保持数值不变 | | 负数 | 符号扩展 | 补 1 | 保持补码结构和数值不变 | | 无符号数 | 零扩展(补 0) | 补 0 | 仅适用于 `unsigned` 类型 | ### 2. 数学原理 有符号数使用补码表示: - **正数**:原码 = 补码,扩展时高位补 0 例:$5_{10} = 0101_2$ → 扩展为 8 位:$00000101_2$ $$ \text{resize}(s) = \begin{cases} s \gg (n_{\text{new}} - n_{\text{old}}), & \text{最高位=0} \\ s \lor (2^{n_{\text{new}}} - 2^{n_{\text{old}}}), & \text{最高位=1} \end{cases} $$ - **负数**:高位补 1 以维持补码结构 例:$-6_{10} = 1010_2$(4 位补码)→ 扩展为 8 位:$11111010_2$ $$ -6_{10} = 1 \times (-2^3) + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = -8 + 2 = -6 $$ ### 3. VHDL 实现方法 #### (1) 使用 `resize` 函数(推荐) ```vhdl library ieee; use ieee.numeric_std.all; -- 必须使用 numeric_std 库 signal short_num : signed(3 downto 0); -- 4 位有符号数 signal long_num : signed(7 downto 0); -- 8 位扩展结果 -- 自动处理符号扩展 long_num <= resize(short_num, 8); ``` #### (2) 手动拼接符号位 ```vhdl -- 正数: 0101 -> 00000101 -- 负数: 1010 -> 11111010 long_num <= (7 downto 4 => short_num(3)) & short_num; ``` ### 4. 错误示例:零扩展的后果 ```vhdl -- 错误!对负数使用零扩展会改变数值 long_num <= "0000" & short_num; -- 测试: short_num = 1010 (-6) -- 结果: 00001010 = +10 (错误) ``` ### 5. 关键区别(符号扩展 vs 零扩展) | **特性** | **符号扩展(`signed`)** | **零扩展(`unsigned`)** | |----------------|--------------------------|--------------------------| | **适用类型** | `signed` | `unsigned` | | **正数处理** | 高位补 0 | 高位补 0 | | **负数处理** | 高位补 1 | 高位补 0(数值错误) | | **数学意义** | 保持补码结构 | 仅适用于无符号数 | | **VHDL 函数** | `resize()` | `resize()` | ### 6. 特殊情况处理 - **最小值处理**(如 4 位补码的 `1000` = -8): 扩展时需增加额外符号位(如 -8 → `11000`),避免数值错误[^2]。 - **FPGA 位宽对齐**: Xilinx/IP 核自动补符号位时,需确认输入为 `signed` 类型[^2]。 > ✅ **最佳实践**:**始终使用 `resize()` 函数处理有符号数扩展**,避免手动操作错误。类型转换时需显式声明: > ```vhdl > unsigned_num := unsigned(resize(signed_num, new_width)); > ``` --- ### 相关问题 1. **如何在 VHDL 中正确处理有符号数和无符号数的混合运算?** 2. **使用 `resize()` 函数时出现位宽不匹配错误如何解决?** 3. **VHDL 中补码的最小值(如 -128)扩展时有哪些注意事项?** 4. **如何验证符号扩展后的数值在仿真中是否正确?** [^1]: 符号扩展保持有符号数的补码结构不变。 [^2]: 补码的最小值扩展需特殊处理以避免数值错误。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值