首先给一个matlab自带的example
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector
% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid
x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
y = x + 2*randn(size(t)); % Sinusoids plus noise
plot(Fs*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)')
NFFT = 2^nextpow2(L); % Next power of 2 from length of y
Y = fft(y,NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2+1);
% Plot single-sided amplitude spectrum.
plot(f,2*abs(Y(1:NFFT/2+1)))
title('Single-Sided Amplitude Spectrum of y(t)')
xlabel('Frequency (Hz)')
ylabel('|Y(f)|') 针对以上程序,你会发现在用fft求信号的幅度谱的时候要乘以2,除以N

本文介绍如何利用MATLAB进行快速傅里叶变换(FFT)来分析信号的频谱。通过一个MATLAB内置示例,阐述了实信号频谱偶函数的特点,以及在IDFT中系数的意义。此外,还讨论了补零后FFT结果需除以长度L而非N的原因。
最低0.47元/天 解锁文章
1001

被折叠的 条评论
为什么被折叠?



