embedding_lookup_sparse学习笔记

本文详细解析了TensorFlow中embedding_lookup_sparse函数的工作原理,包括参数解释、使用场景及代码示例,对比了不同partition_strategy下的计算效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

api

embedding_lookup_sparse

tf.nn.embedding_lookup_sparse(
params,
sp_ids,
sp_weights,
partition_strategy='mod',
name=None,
combiner=None,
max_norm=None
)

params embedding使用的lookup table.

sp_ids 查找lookup table的SparseTensor.

combiner 通过什么运算把一行的数据结合起来mean, sum等.

闲话少说,直接上代码

import numpy as np
import tensorflow as tf

a = np.arange(8).reshape(2, 4)
b = np.arange(8, 16).reshape(2, 4)
c = np.arange(12, 20).reshape(2, 4)

print ("a :")
print (a)
print ("b :")
print (b)
print ("c :")
print (c)

a = tf.Variable(a, dtype=tf.float32)
b = tf.Variable(b, dtype=tf.float32)
c = tf.Variable(c, dtype=tf.float32)

idx = tf.SparseTensor(indices=[[0,0], [0,2], [1,0], [1, 1]], values=[1,2,2,0], dense_shape=(2,3))
result = tf.nn.embedding_lookup_sparse([a,b,c], idx, None, partition_strategy='div', combiner="sum")

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    res = sess.run(result)
    print ("\n# result here")
    print(res)

分析

根据embedding_lookup_sparse的params和partition_strategy参数分为4中场景

mod1: params=[a, c, b], partition_strategy='mod'
div1: params=[a, c, b], partition_strategy='div'
mod2: params=[a, b, c], partition_strategy='mod'
div2: params=[a, b, c], partition_strategy='div'

4中场景下,

params对应的索引对应结果如下:

# a :                mod1   div1    mod2    div2
# [[0 1 2 3]      id  0     0       0       0
#  [4 5 6 7]]     id  3     1       3       1
# b :
# [[ 8  9 10 11]  id  2     4       1       2
#  [12 13 14 15]] id  5     5       4       3
# c :
# [[12 13 14 15]  id  1     2       2       4
#  [16 17 18 19]] id  4     3       5       5

计算方法(下面有详解给出):
ps: mod场景 (0,5)% 3, tensor之间差len(params) = 3
    div场景  (0,5) / 3, tensor之间为连续

sp_ids如下:

# [[1], [], [2]],
#  [2], [0], []]
#

#结果

mod1:

tf.nn.embedding_lookup_sparse([a,c,b], idx, None, partition_strategy=‘mod’,combiner=“sum”)

查找索引矩阵根据partition_strategy(id % 3),得到如下
[[0, 3],
 [1, 4],
 [2, 5]]

# result here
[[20. 22. 24. 26.] = mod1[1] + mod1[2] = [8, 9, 10, 11] + [12, 13, 14, 15]
 [ 8. 10. 12. 14.]] = mod1[2] + mod1[0] = [8, 9, 10, 11] + [0, 1, 2, 3]

div1

tf.nn.embedding_lookup_sparse([a,c,b], idx, None, partition_strategy=‘div’, combiner=“sum”)

查找索引矩阵根据partition_strategy(id / 3),得到如下
#div1
[[0, 1],
 [2, 3],
 [4, 5]]

# result here
[[16. 18. 20. 22.] = div1[1] + div1[2] = [4, 5, 6, 7] + [12, 13, 14, 15]
 [12. 14. 16. 18.]] = div1[2] +div1[0] = [12, 13, 14, 15] + [0, 1, 2, 3]

mod2

tf.nn.embedding_lookup_sparse([a,b,c], idx, None, partition_strategy=‘mod’,combiner=“sum”)

查找索引矩阵根据partition_strategy(id % 3),得到如下
[[0, 3],
 [1, 4],
 [2, 5]]

# result here
[[20. 22. 24. 26.] = mod2[1] + mod2[2] = [8, 9, 10, 11] + [12, 13, 14, 15]
 [12. 14. 16. 18.]] = mod2[2] + mod2[0] = [12, 13, 14, 15] + [0, 1, 2, 3]

div2

tf.nn.embedding_lookup_sparse([a,b,c], idx, None, partition_strategy=‘mod’,combiner=“sum”)

查找索引矩阵根据partition_strategy(id / 3),得到如下

[[0, 1],
 [2, 3],
 [4, 5]]
 
# result here
[[12. 14. 16. 18.] = div2[1] + div2[2] = [4, 5, 6, 8] + [8, 9, 10, 11]
 [ 8. 10. 12. 14.]] = div2[2] + div2[0] = [8, 9, 10, 11] + [0, 1, 2, 3]
'''
tf.nn.embedding_lookup是一个用于选取张量中索引对应元素的函数。它的用法是tf.nn.embedding_lookup(tensor, id),其中tensor是输入张量,id是要查找的索引。根据id在tensor中找到对应的元素并返回。 举个例子,假设我们有一个嵌入矩阵embedding和一个输入id列表input_ids。我们可以使用tf.nn.embedding_lookup(embedding, input_ids)来找到embedding中与input_ids中的id对应的向量。如果input_ids=[1, 2, 3],则函数会返回embedding中下标为1, 2, 3的向量组成的矩阵。 需要注意的是,tf.nn.embedding_lookup不仅仅是简单地查表,查到的向量是可以训练的,也就是说它是一种全连接层,训练参数的个数是类别数乘以嵌入向量的大小。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [tf.nn.embedding_lookup()函数](https://blog.youkuaiyun.com/yql_617540298/article/details/88394120)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [tf.nn.embedding_lookup()的用法](https://blog.youkuaiyun.com/yangfengling1023/article/details/82910951)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值