if __name__ == "__main__":
opt = parse_opt() ##part1
main(opt) ##part2
part1
def parse_opt(known=False):
parser = argparse.ArgumentParser()
# ?
parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
# ***** Rectangular training/inference去除这些原图仿射变换到(640,640)的冗余信息
parser.add_argument('--rect', action='store_true', help='rectangular training')
# ***** 它可能允许在较低 --img 尺寸下进行更高 --img 尺寸训练的一些好处
parser.add_argument('--quad', action='store_true', help='quad dataloader')
# ***** one hot -> label-smoothing
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
# ***** 超参数进化
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--linear-lr', action='store_true', help='linear LR')
# resume参数
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
# 默认就行
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--multi-scale', default=1, help='vary img-size +/- 50%%')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
#parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
opt = parser.parse_known_args()[0] if known else parser.parse_args()
opt.nosave = opt.noval = opt.noautoanchor = False # nothing
opt.device = opt.workers = opt.freeze = opt.adam = 0
opt.weights = 'runs/train/exp4/weights/best.pt'
# opt.cfg = 'models/yolov5s.yaml'
opt.cfg = ''
opt.data = r'data\nc4dataset.yaml'
## 设置 cfg 从头开始 设置weights 迁移学习 data里面将yaml的nc改为需要的nc
opt.epochs = 500
opt.batch_size = 4
opt.imgsz = 640
opt.name = 'exp'
opt.project = 'runs/train'
opt.change_nc = False
opt.restart = False
return opt
part2
LOGGER = logging.getLogger(__name__)
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
------------------------------------------------------------------------------------------------
local_rank和rank是一个意思,即代表第几个进程,world_size表示总共有n个进程
比如有2块gpu ,world_size = 5 , rank = 3,local_rank = 0 表示总共5个进程第 3 个进程内的第 1 块 GPU(不一定是0号gpu)。
local_rank和rank的取值范围是从0到n-1
-----------------------------------------------------------------------</

本文介绍了如何解析和配置Yolov5模型的训练参数,重点讲解了`parse_opt`函数,以及在`main`函数中关于超参数优化的部分,特别是遗传算法(evolve)用于模型进化的过程。
最低0.47元/天 解锁文章
1万+





