摘抄-《失控》

第一章 人造与天生
  • 神律
第二章 蜂群思维
  • 正如人类灵魂脱离人体,通过飞行的蜂群,你可以真实地看到,人类灵魂分离的影像。
  • 像流淌的黑色熔岩,渐渐消溶,然后腾空而起。
  • “蜂群的灵魂”在哪里,它在何处驻留?
  • 涌现
  • 鸟群远非鸟的简单聚合。
  • 而我不知道,除此(音乐)之外,人类还能拥有什么更好的天赋,因为从三个音阶(三和弦)中他所构造出的,不是第四个音阶,而是星辰。
  • 低层级的存在无法推断出高层级的复杂性。
  • 创造出什么样的记忆,有赖于最近我往记忆里塞入了什么,也包括上次重组这段记忆时所加进去的感觉或其他事情。这就是为什么每次回忆起来都有些微不同的原因,因为每次它都是真正意义上的完全不同的经历。
  • 记忆是分布式的。
  • 放下一切固有和确信的执念。
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值