CLRS笔记3:函数的增长

本文详细介绍了渐近记号θ、Ο、Ω、o和ω的定义及其性质,包括传递性、自反性、对称性和转置对称性,并列举了常见函数如多项式、指数式、对数、阶乘等的基本概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[b]渐近记号[/b]
θ(g(n))={f(n):存在正常数c1,c2和n0,使对所有的n>=n0,有0 <= c1g(n) <= f(n) <= c2g(n)}
Ο(g(n))={f(n):存在正常数c和n0,使对所有的n>=n0,有0 <= f(n) <= cg(n)}
Ω(g(n))={f(n):存在正常数c和n0,使对所有的n>=n0,有0 <= cg(n) <= f(n)}
o(g(n))={f(n):对任意正常数c,存在常数n0>0,使对所有的n>=n0,有0 <= f(n) < cg(n)}
ω(g(n))={f(n):对任意正常数c,存在常数n0>0,使对所有的n>=n0,有0 <= cg(n) < f(n)}

[b]传递性[/b]
f(n) = θ(g(n)) 和 g(n) = θ(h(n)) 蕴含f(n) = θ(h(n))
f(n) = Ο(g(n)) 和 g(n) = Ο(h(n)) 蕴含f(n) = Ο(h(n))
f(n) = Ω(g(n)) 和 g(n) = Ω(h(n)) 蕴含f(n) = Ω(h(n))
f(n) = o(g(n)) 和 g(n) = o(h(n)) 蕴含f(n) = o(h(n))
f(n) = ω(g(n)) 和 g(n) = ω(h(n)) 蕴含f(n) = ω(h(n))

[b]自反性[/b]
f(n) = θ(f(n)) f(n) = Ο(f(n)) f(n) = Ω(f(n))

[b]对称性[/b]
f(n) = θ(g(n)) 当且仅当 g(n) = θ(f(n))

[b]转置对称性[/b]
f(n) = Ο(g(n)) 当且仅当 g(n) = Ω(f(n))
f(n) = o(g(n)) 当且仅当 g(n) = ω(f(n))

[b]类比[/b]
f(n) = Ο(g(n)) ~ a <= b
f(n) = Ω(g(n)) ~ a >= b
f(n) = θ(g(n)) ~ a = b
f(n) = o(g(n)) ~ a < b
f(n) = ω(g(n)) ~ a > b

[b]标准记号和常用函数[/b]
函数f(n)单调递增:若m <= n蕴含f(m) <= f(n)
函数f(n)单调递减:若m <= n蕴含f(m) >= f(n)
函数f(n)严格递增:若m < n蕴含f(m) < f(n)
函数f(n)严格递减:若m < n蕴含f(m) > f(n)

下取整和上取整:x-1 < [_ x _] <= [- x -] < x+1

取模: a mod n = a - [_a/n_]n

多项式:给定一个正整数d,n的d次多项式是具有如下形式的函数p(n):
d
p(n) = ∑ ain^i
i=0

指数式:对任意实数a>0、m和n,有下列恒等式:
a^0 = 1, a^1 = a, a^-1 = 1/a
(a^m)^n = a^mn, (a^m)^n = (a^n)^m, a^ma^n = a^m+n

对数:
lgn = log2n
lnn = logen
lg^kn = (lgn)^k
lglgn = lg(lgn)

阶乘:
记号n!定义为对所有整数n >= 0,
n! { 1 如果n=0
n*(n-1)! 如果n > 0

函数迭代:
f(i)(n) = { n 如果i=0
f(f(i-1)(n)) 如果i>0

多重对数函数:
lg*n = min{i >= 0: lg(i)n <=1}

斐波那契数:
斐波那契数递归地定义为:
F0 = 0, F1 = 1, Fi = Fi-1 + Fi-2 当i >= 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值