图像处理与识别学习小结

本文总结了图像处理与识别的关键概念和技术,包括数字图像处理的定义、应用领域、图像增强方法,如对比度增强、直方图均衡化、空域滤波,以及边缘检测算法,如Canny边缘检测。还探讨了图像压缩、图像分割的基本方法,并提到了阈值分割中的大津法。此外,文章提及了常用的图像格式和图像库,如OpenCV。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.youkuaiyun.com/jiangjunshow

也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!

               

图像处理与识别学习小结

 

数字图像处理是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。 数字图像处理是信号处理的子类, 另外与计算机科学、人工智能等领域也有密切的关系。 传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。大多数用于一维信号处理的概念都有其在二维图像信号领域的延伸,它们中的一部分在二维情形下变得十分复杂。同时图像处理也具有自身一些新的概念,例如,连通性、旋转不变性,等等。这些概念仅对二维或更高维的情况下才有非平凡的意义。图像处理中常用到快速傅立叶变换,因为它可以减小数据处理量和处理时间。
数字图像处理应用在以下方面 :

摄影及印刷 (Photography and printing)

卫星图像处理 (Satellite image processing)

医学图像处理 (Medical image processing)

面孔识别, 特征识别 (Face detection, feature detection, face identification)

显微图像处理 (Microscope image processing)

汽车障碍识别 (Car barrier detection)

 

数字图像基础

图像的基本概念、图像取样和量化、数字图像表示、 空间和灰度级分辨率、图像纹理、像素间的一些基本关系(相邻像素、邻接性、连通性、区域和边界、距离度量)、线性和非线性变换。

线性变换:如果变换函数是线性的或是分段线性,这种变换就是线性变换。以线性函数加大图像的对比度的效果是使整幅图像的质量改善。以分段线性函数加大图像中某个(或某几个)亮度区间的对比度的效果是使局部亮度区间的质量得到改善。

非线性变换:当变换函数是非线性时,即为非线性变换。常用的有指数变换和对数变换。

RGB (red green blue): 红绿蓝三基色

CMYK (Cyan-Magenta-Yellow-black inK): 青色-品红-黄色-黑色

HSI (Hue-Saturation-Intensity): 色调-饱和度-强度

DDB (device-dependent bitmap): 设备相关位图

DIB (device-independent bitmap): 设备无关位图

CVBS (Composite Video Broadcast Signal): 复合电视广播信号

YUV(亦称Y Cr Cb)是被欧洲电视系统所采用的一种颜色编码方法(属于PAL制)。

 



 

数字图像存储与显示

图像格式

在计算机中,有两种类型的图:矢量图(vector graphics)和位映象图(bitmapped graphics)。矢量图是用数学方法描述的一系列点、线、弧和其他几何形状,如图(a)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值