分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.youkuaiyun.com/jiangjunshow
也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!
本文是针对[数据结构基础系列(7):图]的实践项目。
【项目 - 迷宫问题之图深度优先遍历解法】
设计一个程序,采用深度优先遍历算法的思路,解决迷宫问题。
(1)建立迷宫对应的图数据结构,并建立其邻接表表示。
(2)采用深度优先遍历的思路设计算法,输出从入口(1,1)点到出口(M,N)的所有迷宫路径。
[模型建立]
将迷宫中的每一格作为一个顶点,相邻格子可以到达,则对应的顶点之间存在边相连。
例如,下面的迷宫
在使用数组表示时,用0表示格子是空地,用1表示格子处是墙,对应的矩阵是:
int mg[M+2][N+2]= //迷宫数组 { {1,1,1,1,1,1}, {1,0,0,0,1,1}, {1,0,1,0,0,1}, {1,0,0,0,1,1}, {1,1,0,0,0,1}, {1,1,1,1,1,1} };
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
建立的图结构为:
于是,从(1,1)到(4,4)的迷宫问题,转化为寻找顶点(1,1)到顶点(4,4)的路径的问题。
[参考代码]
#include <stdio.h>#include <malloc.h>#define MaxSize 100#define M 4#define N 4//以下定义邻接表类型typedef struct ANode //边的结点结构类型{ int i,j; //该边的终点位置(i,j) struct ANode *nextarc; //指向下一条边的指针} ArcNode;typedef struct Vnode //邻接表头结点的类型{ ArcNode *firstarc; //指向第一条边} VNode;typedef struct{ VNode adjlist[M+2][N+2]; //邻接表头节点数组} ALGraph; //图的邻接表类型typedef struct{ int i; //当前方块的行号 int j; //当前方块的列号} Box;typedef struct{ Box data[MaxSize]; int length; //路径长度} PathType; //定义路径类型int visited[M+2][N+2]= {0};int count=0;void CreateList(ALGraph *&G,int mg[][N+2])//建立迷宫数组对应的邻接表G{ int i,j,i1,j1,di; ArcNode *p; G=(ALGraph *)malloc(sizeof(ALGraph)); for (i=0; i<M+2; i++) //给邻接表中所有头节点的指针域置初值 for (j=0; j<N+2; j++) G->adjlist[i][j].firstarc=NULL; for (i=1; i<=M; i++) //检查mg中每个元素 for (j=1; j<=N; j++) if (mg[i][j]==0) { di=0; while (di<4) { switch(di) { case 0: i1=i-1; j1=j; break; case 1: i1=i; j1=j+1; break; case 2: i1=i+1; j1=j; break; case 3: i1=i, j1=j-1; break; } if (mg[i1][j1]==0) //(i1,j1)为可走方块 { p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p p->i=i1; p->j=j1; p->nextarc=G->adjlist[i][j].firstarc; //将*p节点链到链表后 G->adjlist[i][j].firstarc=p; } di++; } }}//输出邻接表Gvoid DispAdj(ALGraph *G){ int i,j; ArcNode *p; for (i=0; i<M+2; i++) for (j=0; j<N+2; j++) { printf(" [%d,%d]: ",i,j); p=G->adjlist[i][j].firstarc; while (p!=NULL) { printf("(%d,%d) ",p->i,p->j); p=p->nextarc; } printf("\n"); }}void FindPath(ALGraph *G,int xi,int yi,int xe,int ye,PathType path){ ArcNode *p; visited[xi][yi]=1; //置已访问标记 path.data[path.length].i=xi; path.data[path.length].j=yi; path.length++; if (xi==xe && yi==ye) { printf(" 迷宫路径%d: ",++count); for (int k=0; k<path.length; k++) printf("(%d,%d) ",path.data[k].i,path.data[k].j); printf("\n"); } p=G->adjlist[xi][yi].firstarc; //p指向顶点v的第一条边顶点 while (p!=NULL) { if (visited[p->i][p->j]==0) //若(p->i,p->j)方块未访问,递归访问它 FindPath(G,p->i,p->j,xe,ye,path); p=p->nextarc; //p指向顶点v的下一条边顶点 } visited[xi][yi]=0;}int main(){ ALGraph *G; int mg[M+2][N+2]= //迷宫数组 { {1,1,1,1,1,1}, {1,0,0,0,1,1}, {1,0,1,0,0,1}, {1,0,0,0,1,1}, {1,1,0,0,0,1}, {1,1,1,1,1,1} }; CreateList(G,mg); printf("迷宫对应的邻接表:\n"); DispAdj(G); //输出邻接表 PathType path; path.length=0; printf("所有的迷宫路径:\n"); FindPath(G,1,1,M,N,path); return 0;}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
测试时,换作下面的迷宫试一试:
给我老师的人工智能教程打call!http://blog.youkuaiyun.com/jiangjunshow
