分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.youkuaiyun.com/jiangjunshow
也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!
本文针对数据结构基础系列网络课程(5):数组与广义表的实践项目。
【项目 - 稀疏矩阵相加】
采用三元组存储稀疏矩阵,设计两个稀疏矩阵相加的运算算法
提示1:两个行数、列数相同的矩阵可以相加
提示2:充分利用已经建立好的算法库解决问题
[参考解答1](程序中使用的头文件”tup.h”见稀疏矩阵的三元组表示算法库)
#include <stdio.h>#include "tup.h"bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c){ int i,j; ElemType va,vb,vc; if (a.rows!=b.rows || a.cols!=b.cols) return false; //行数或列数不等时不能进行相加运算 c.rows=a.rows; c.cols=a.cols; //c的行列数与a的相同 c.nums=0; for(i=0; i<M; i++) for(j=0; j<N; j++) { Assign(a,va,i,j); Assign(b,vb,i,j); vc=va+vb; if(vc) Value(c,vc,i,j); } return true;}int main(){ TSMatrix ta,tb,tc; int A[M][N]= { {0,0,1,0,0,0,0}, {0,2,0,0,0,0,0}, {3,0,0,0,0,0,0}, {0,0,0,5,0,0,0}, {0,0,0,0,6,0,0}, {0,0,0,0,0,7,4} }; int B[M][N]= { {0,0,10,0,0,0,0}, {0,0,0,20,0,0,0}, {0,0,0,0,0,0,0}, {0,0,0,50,0,0,0}, {0,0,20,0,0,0,0}, {0,0,0,10,0,0,4} }; CreatMat(ta,A); CreatMat(tb,B); printf("A:\n"); DispMat(ta); printf("B:\n"); DispMat(tb); if(MatAdd(ta, tb, tc)) { printf("A+B:\n"); DispMat(tc); } else { printf("相加失败\n"); } return 0;}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
[参考解答2]
下面给出的解答,没有利用算法库中已经实现的Assign和Value两个基本运算,而是直接e采取了更为直接的方法去完成。用i和j两个变量扫描三元组a和b,按行序优先的原则进行处理,将结果存放于c中。当a的当前元素和b的当前元素的行号和列号均相等时,将它们的值相加,只有在相加值不为0时,才在c中添加一个新的元素。
#include <stdio.h>#include "tup.h"bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c){ int i=0,j=0,k=0; ElemType v; if (a.rows!=b.rows || a.cols!=b.cols) return 0; //行数或列数不等时不能进行相加运算 c.rows=a.rows; c.cols=a.cols; //c的行列数与a的相同 while (i<a.nums && j<b.nums) //处理a和b中的每个元素 { if (a.data[i].r==b.data[j].r) //行号相等时 { if(a.data[i].c<b.data[j].c) //a元素的列号小于b元素的列号 { c.data[k].r=a.data[i].r;//将a元素添加到c中 c.data[k].c=a.data[i].c; c.data[k].d=a.data[i].d; k++; i++; } else if (a.data[i].c>b.data[j].c)//a元素的列号大于b元素的列号 { c.data[k].r=b.data[j].r; //将b元素添加到c中 c.data[k].c=b.data[j].c; c.data[k].d=b.data[j].d; k++; j++; } else //a元素的列号等于b元素的列号 { v=a.data[i].d+b.data[j].d; if (v!=0) //只将不为0的结果添加到c中 { c.data[k].r=a.data[i].r; c.data[k].c=a.data[i].c; c.data[k].d=v; k++; } i++; j++; } } else if (a.data[i].r<b.data[j].r) //a元素的行号小于b元素的行号 { c.data[k].r=a.data[i].r; //将a元素添加到c中 c.data[k].c=a.data[i].c; c.data[k].d=a.data[i].d; k++; i++; } else //a元素的行号大于b元素的行号 { c.data[k].r=b.data[j].r; //将b元素添加到c中 c.data[k].c=b.data[j].c; c.data[k].d=b.data[j].d; k++; j++; } } while (i<a.nums) //a中尚有元素时 { c.data[k].r=a.data[i].r;//将a元素添加到c中 c.data[k].c=a.data[i].c; c.data[k].d=a.data[i].d; k++; i++; } while (j<b.nums) //b中尚有元素时 { c.data[k].r=b.data[j].r; //将b元素添加到c中 c.data[k].c=b.data[j].c; c.data[k].d=b.data[j].d; k++; j++; } c.nums=k; return true;}int main(){ TSMatrix ta,tb,tc; int A[M][N]= { {0,1,0,0,0,0,0}, {0,2,0,0,0,0,0}, {3,0,0,0,0,0,0}, {0,0,0,5,0,0,0}, {0,0,0,0,6,0,0}, {0,0,0,0,0,7,4} }; int B[M][N]= { {0,0,10,0,0,0,0}, {0,0,0,20,0,0,0}, {0,0,0,0,0,0,0}, {0,0,0,50,0,0,0}, {0,0,20,0,0,0,0}, {0,0,0,10,0,0,4} }; CreatMat(ta,A); CreatMat(tb,B); printf("A:\n"); DispMat(ta); printf("B:\n"); DispMat(tb); if(MatAdd(ta, tb, tc)) { printf("A+B:\n"); DispMat(tc); } else { printf("相加失败\n"); } return 0;}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
对比两种方案,“参考解答1”利用Assign和Value两个基本运算的方案,可以在只知道“矩阵加法是对应位置的元素相加”的基础上就可以求解;而“参考解答2”则不得不关注在数据存储层面的细节,以致于矩阵加法的规则都不容易看出来了。“参考解答2”中繁杂的代码,违反了程序设计中诸多的原则(例如模块化),相对“参考解答1”的简洁中透出的优雅,该不是学习者效仿的思维。
附:1楼评论中带bug的解答,原参考解答2。重点观察少了while (i<a.nums)、while (j<b.nums)两个循环,当a和b的最后一个元素不在同一行同一列时,会丢数据的。这个bug的漏网,和main函数中采用的测试数据不够好有关,让两个矩阵非0元素在同一行同一列,忽略了“边界”数据的重要性。
与此同时,再次体会参考解答1的好处,缺少了一层抽象,对应的就是处处要考虑细节。智者千虑,必有一失,还是要运用上工程中的原则为好。
#include <stdio.h>#include "tup.h"bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c){ int i=0,j=0,k=0; ElemType v; if (a.rows!=b.rows || a.cols!=b.cols) return 0; //行数或列数不等时不能进行相加运算 c.rows=a.rows; c.cols=a.cols; //c的行列数与a的相同 while (i<a.nums && j<b.nums) //处理a和b中的每个元素 { if (a.data[i].r==b.data[j].r) //行号相等时 { if(a.data[i].c<b.data[j].c) //a元素的列号小于b元素的列号 { c.data[k].r=a.data[i].r;//将a元素添加到c中 c.data[k].c=a.data[i].c; c.data[k].d=a.data[i].d; k++; i++; } else if (a.data[i].c>b.data[j].c)//a元素的列号大于b元素的列号 { c.data[k].r=b.data[j].r; //将b元素添加到c中 c.data[k].c=b.data[j].c; c.data[k].d=b.data[j].d; k++; j++; } else //a元素的列号等于b元素的列号 { v=a.data[i].d+b.data[j].d; if (v!=0) //只将不为0的结果添加到c中 { c.data[k].r=a.data[i].r; c.data[k].c=a.data[i].c; c.data[k].d=v; k++; } i++; j++; } } else if (a.data[i].r<b.data[j].r) //a元素的行号小于b元素的行号 { c.data[k].r=a.data[i].r; //将a元素添加到c中 c.data[k].c=a.data[i].c; c.data[k].d=a.data[i].d; k++; i++; } else //a元素的行号大于b元素的行号 { c.data[k].r=b.data[j].r; //将b元素添加到c中 c.data[k].c=b.data[j].c; c.data[k].d=b.data[j].d; k++; j++; } c.nums=k; } return true;}int main(){ TSMatrix ta,tb,tc; int A[M][N]= { {0,0,1,0,0,0,0}, {0,2,0,0,0,0,0}, {3,0,0,0,0,0,0}, {0,0,0,5,0,0,0}, {0,0,0,0,6,0,0}, {0,0,0,0,0,7,4} }; int B[M][N]= { {0,0,10,0,0,0,0}, {0,0,0,20,0,0,0}, {0,0,0,0,0,0,0}, {0,0,0,50,0,0,0}, {0,0,20,0,0,0,0}, {0,0,0,10,0,0,4} }; CreatMat(ta,A); CreatMat(tb,B); printf("A:\n"); DispMat(ta); printf("B:\n"); DispMat(tb); if(MatAdd(ta, tb, tc)) { printf("A+B:\n"); DispMat(tc); } else { printf("相加失败\n"); } return 0;}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
给我老师的人工智能教程打call!http://blog.youkuaiyun.com/jiangjunshow
新的改变
我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:
- 全新的界面设计 ,将会带来全新的写作体验;
- 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
- 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
- 全新的 KaTeX数学公式 语法;
- 增加了支持甘特图的mermaid语法1 功能;
- 增加了 多屏幕编辑 Markdown文章功能;
- 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
- 增加了 检查列表 功能。
功能快捷键
撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
合理的创建标题,有助于目录的生成
直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。
如何改变文本的样式
强调文本 强调文本
加粗文本 加粗文本
标记文本
删除文本
引用文本
H2O is是液体。
210 运算结果是 1024.
插入链接与图片
链接: link.
图片: ![]()
带尺寸的图片: ![]()
当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。
如何插入一段漂亮的代码片
去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.
// An highlighted block var foo = 'bar';
生成一个适合你的列表
- 项目
- 项目
- 项目
- 项目
- 项目1
- 项目2
- 项目3
- 计划任务
- 完成任务
创建一个表格
一个简单的表格是这么创建的:
| 项目 | Value |
|---|---|
| 电脑 | $1600 |
| 手机 | $12 |
| 导管 | $1 |
设定内容居中、居左、居右
使用:---------:居中
使用:----------居左
使用----------:居右
| 第一列 | 第二列 | 第三列 |
|---|---|---|
| 第一列文本居中 | 第二列文本居右 | 第三列文本居左 |
SmartyPants
SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:
| TYPE | ASCII | HTML |
|---|---|---|
| Single backticks | 'Isn't this fun?' | ‘Isn’t this fun?’ |
| Quotes | "Isn't this fun?" | “Isn’t this fun?” |
| Dashes | -- is en-dash, --- is em-dash | – is en-dash, — is em-dash |
创建一个自定义列表
-
Markdown
- Text-to- HTML conversion tool Authors
- John
- Luke
如何创建一个注脚
一个具有注脚的文本。2
注释也是必不可少的
Markdown将文本转换为 HTML。
KaTeX数学公式
您可以使用渲染LaTeX数学表达式 KaTeX:
Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n−1)!∀n∈N 是通过欧拉积分
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.
你可以找到更多关于的信息 LaTeX 数学表达式here.
新的甘特图功能,丰富你的文章
gantt
dateFormat YYYY-MM-DD
title Adding GANTT diagram functionality to mermaid
section 现有任务
已完成 :done, des1, 2014-01-06,2014-01-08
进行中 :active, des2, 2014-01-09, 3d
计划一 : des3, after des2, 5d
计划二 : des4, after des3, 5d
- 关于 甘特图 语法,参考 这儿,
UML 图表
可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图::
这将产生一个流程图。:
- 关于 Mermaid 语法,参考 这儿,
FLowchart流程图
我们依旧会支持flowchart的流程图:
- 关于 Flowchart流程图 语法,参考 这儿.
导出与导入
导出
如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。
导入
如果你想加载一篇你写过的.md文件或者.html文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。
注脚的解释 ↩︎
本文探讨了数据结构基础网络课程中的稀疏矩阵相加项目,介绍了如何采用三元组存储并设计相加算法。通过对比两种不同实现方案,强调了模块化和抽象思维在程序设计中的重要性。此外,还提到了Markdown编辑器的多项新功能,如图片拖拽、代码高亮、LaTeX公式和甘特图等,以提升写作体验。
7471

被折叠的 条评论
为什么被折叠?



