http://www.ibm.com/developerworks/cn/linux/kernel/syscall/part1/index.html
什么是系统调用?
Linux内核中设置了一组用于实现各种系统功能的子程序,称为系统调用。用户可以通过系统调用命令在自己的应用程序中调用它们。从某种角度来看,系统调用和普通的函数调用非常相似。区别仅仅在于,系统调用由操作系统核心提供,运行于核心态;而普通的函数调用由函数库或用户自己提供,运行于用户态。二者在使用方式上也有相似之处,在下面将会提到。
随Linux核心还提供了一些C语言函数库,这些库对系统调用进行了一些包装和扩展,因为这些库函数与系统调用的关系非常紧密,所以习惯上把这些函数也称为系统调用。
linux中共有多少个系统调用?
这个问题可不太好回答,就算让Linus Torvaldz本人也不见得一下子就能说清楚。
在2.4.4版内核中,狭义上的系统调用共有221个,你可以在<内核源码目录>/include/asm-i386/unistd.h中找到它们的原本,也可以通过命令"man 2 syscalls"察看它们的目录(man pages的版本一般比较老,可能有很多最新的调用都没有包含在内)。广义上的系统调用,也就是以库函数的形式实现的那些,它们的个数从来没有人统计过,这是一件吃力不讨好的活,新内核不断地在推出,每一个新内核中函数数目的变化根本就没有人在乎,至少连内核的修改者本人都不在乎,因为他们从来没有发布过一个此类的声明。
随本文一起有一份经过整理的列表,它不可能非常全面,但常见的系统调用基本都已经包含在内,那里面只有不多的一部分是你平时用得到的,本专栏将会有选择的对它们进行介绍。
为什么要用系统调用?
实际上,很多已经被我们习以为常的C语言标准函数,在Linux平台上的实现都是靠系统调用完成的,所以如果想对系统底层的原理作深入的了解,掌握各种系统调用是初步的要求。进一步,若想成为一名Linux下编程高手,也就是我们常说的Hacker,其标志之一也是能对各种系统调用有透彻的了解。
即使除去上面的原因,在平常的编程中你也会发现,在很多情况下,系统调用是实现你的想法的简洁有效的途径,所以有可能的话应该尽量多掌握一些系统调用,这会对你的程序设计过程带来意想不到的帮助。
系统调用是怎么工作的?
一般的,进程是不能访问内核的。它不能访问内核所占内存空间也不能调用内核函数。CPU硬件决定了这些(这就是为什么它被称作"保护模式")。系统调用是这些规则的一个例外。其原理是进程先用适当的值填充寄存器,然后调用一个特殊的指令,这个指令会跳到一个事先定义的内核中的一个位置(当然,这个位置是用户进程可读但是不可写的)。在Intel CPU中,这个由中断0x80实现。硬件知道一旦你跳到这个位置,你就不是在限制模式下运行的用户,而是作为操作系统的内核--所以你就可以为所欲为。
进程可以跳转到的内核位置叫做sysem_call。这个过程检查系统调用号,这个号码告诉内核进程请求哪种服务。然后,它查看系统调用表(sys_call_table)找到所调用的内核函数入口地址。接着,就调用函数,等返回后,做一些系统检查,最后返回到进程(或到其他进程,如果这个进程时间用尽)。如果你希望读这段代码,它在<内核源码目录>/kernel/entry.S,Entry(system_call)的下一行。
如何使用系统调用?
先来看一个例子:
#include<linux/unistd.h> /*定义宏_syscall1*/
#include<time.h> /*定义类型time_t*/
_syscall1(time_t,time,time_t *,tloc) /*宏,展开后得到time()函数的原型*/
main()
{
time_t the_time;
the_time=time((time_t *)0); /*调用time系统调用*/
printf("The time is %ld\n",the_time);
}
系统调用time返回从格林尼治时间1970年1月1日0:00开始到现在的秒数。这是最标准的系统调用的形式,宏_syscall1()展开来得到一个函数原型,稍后我会作详细解释。但事实上,如果把程序改成下面的样子,程序也可以运行得同样的结果。
#include<time.h>
main()
{
time_t the_time;
the_time=time((time_t *)0); /*调用time系统调用*/
printf("The time is %ld\n",the_time);
}
这是因为在time.h中实际上已经用库函数的形式实现了time这个系统调用,替我们省掉了调用_syscall1宏展开得到函数原型这一步。
大多数系统调用都在各种C语言函数库中有所实现,所以在一般情况下,我们都可以像调用普通的库函数那样调用系统调用,只在极个别的情况下,我们才有机会用到_syscall*()这几个宏。
__syscall*()是什么?
在unistd.h里定义了7个宏,分别是
_syscall0(type,name)
_syscall1(type,name,type1,arg1)
_syscall2(type,name,type1,arg1,type2,arg2)
_syscall3(type,name,type1,arg1,type2,arg2,type3,arg3)
_syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4)
_syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,type5,arg5)
_syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4,type5,arg5,type6,arg6)
它们看起来似乎不太像宏,但其实质和
#define MAXSIZE 100
里面的MAXSIZE没有任何区别。
它们的作用是形成相应的系统调用函数原型,供我们在程序中调用。我们很容易就能发现规律,_syscall后面的数字和typeN,argN的数目一样多。事实上,_syscall后面跟的数字指明了展开后形成函数的参数的个数,让我们看一个实例,就是刚刚用过的time系统调用:
展开后的情形是这样:
time_t time(time_t * tloc)
{
long __res;
__asm__ volatile("int $0x80" : "=a" (__res) : "0" (13),"b" ((long)(tloc)));
do {
if ((unsigned long)(__res) >= (unsigned long)(-125)) {
errno = -(__res);
__res = -1;
}
return (time_t) (__res);
} while (0) ;
}
可以看出,_syscall1(time_t,time,time_t *,tloc)展开成一个名为time的函数,原参数time_t就是函数的返回类型,原参数time_t *和tloc分别构成新函数的参数。事实上,程序中用到的time函数的原型就是它。
errno是什么?
为防止和正常的返回值混淆,系统调用并不直接返回错误码,而是将错误码放入一个名为errno的全局变量中。如果一个系统调用失败,你可以读出errno的值来确定问题所在。
errno不同数值所代表的错误消息定义在errno.h中,你也可以通过命令"man 3 errno"来察看它们。
需要注意的是,errno的值只在函数发生错误时设置,如果函数不发生错误,errno的值就无定义,并不会被置为0。另外,在处理errno前最好先把它的值存入另一个变量,因为在错误处理过程中,即使像printf()这样的函数出错时也会改变errno的值。
系统调用兼容性好吗?
很遗憾,答案是--不好。但这决不意味着你的程序会三天两头的导致系统崩溃,因为系统调用是Linux的内核提供的,所以它们工作起来非常稳定,对于此点无需丝毫怀疑,在绝大多数的情况下,系统调用要比你自己编写的代码可靠而高效的多。
但是,在Linux的各版本内核之间,系统调用的兼容性表现得并不像想象那么好,这是由Linux本身的性质决定的。Linux是一群程序设计高手利用业余时间开发出来的,他们中间的大部分人没有把Linux当成一个严肃的商业软件,(现在的情况有些不同了,随着Linux商业公司和以Linux为生的人的增长,不少人的脑筋发生了变化。)结果就是,如果新的方案在效率和兼容性上发生了矛盾,他们往往舍弃兼容性而追求效率,就这样,如果他们认为某个系统调用实现的比较糟糕,他们就会毫不犹豫的作出修改,有些时候甚至连接口也一起改掉了,更可怕的是,很多时候,他们对自己的修改连个招呼也不打,在任何文档里都找不到关于修改的提示。这样,每当新内核推出的时候,很可能都会悄悄的更新一些系统调用,用户编制的应用程序也会跟着出错。
说到这里,你是不是感觉前途一片昏暗呢?呵呵,不用太紧张,如前面所说,随着越来越多的人把Linux当成自己的饭碗,不兼容的情况也越来越罕见。从2.2版本以后的Linux内核已经非常稳定了,不过尽管如此,你还是有必要在每个新内核推出之后,对自己的应用程序进行兼容性测试,以防止意外的发生。
该如何学习linux系统调用?
你可以用"man 2 系统调用名称"的命令来查看各条系统调用的介绍,但这首先要求你要有不错的英语基础,其次还得有一定的程序设计和系统编程的功底,man pages不会涉及太多的应用细节,因为它只是一个手册而非教程。如果man pages所提供的东西不能使你感到非常满意,那就跟我来吧,本专栏将向你展示Linux系统调用编程的无穷魅力。
虽然本专栏并非异常高深的技术文章,但是还对读者有两点小小的要求:1)读者必须有一定的C语言编程经验,本专栏不会在语言细节上过分纠缠;2)读者必须有一定的Linux使用经验,本专栏也不打算在Linux应用上大动干戈。举一个小小的测试标准,如果你能完全看懂本文从开头到这里所讲的东西,你就合格了。收拾好行囊,准备出发吧!
关于进程的一些必要知识
先看一下进程在大学课本里的标准定义:“进程是可并发执行的程序在一个数据集合上的运行过程。”这个定义非常严谨,而且难懂,如果你没有一下子理解这句话,就不妨看看笔者自己的并不严谨的解释。我们大家都知道,硬盘上的一个可执行文件经常被称作程序,在Linux系统中,当一个程序开始执行后,在开始执行到执行完毕退出这段时间里,它在内存中的部分就被称作一个进程。
当然,这个解释并不完善,但好处是容易理解,在以下的文章中,我们将会对进程作一些更全面的认识。
linux进程简介
Linux是一个多任务的操作系统,也就是说,在同一个时间内,可以有多个进程同时执行。如果读者对计算机硬件体系有一定了解的话,会知道我们大家常用的单CPU计算机实际上在一个时间片断内只能执行一条指令,那么Linux是如何实现多进程同时执行的呢?原来Linux使用了一种称为“进程调度(process scheduling)”的手段,首先,为每个进程指派一定的运行时间,这个时间通常很短,短到以毫秒为单位,然后依照某种规则,从众多进程中挑选一个投入运行,其他的进程暂时等待,当正在运行的那个进程时间耗尽,或执行完毕退出,或因某种原因暂停,Linux就会重新进行调度,挑选下一个进程投入运行。因为每个进程占用的时间片都很短,在我们使用者的角度来看,就好像多个进程同时运行一样了。
在Linux中,每个进程在创建时都会被分配一个数据结构,称为进程控制块(Process Control Block,简称PCB)。PCB中包含了很多重要的信息,供系统调度和进程本身执行使用,其中最重要的莫过于进程ID(process ID)了,进程ID也被称作进程标识符,是一个非负的整数,在Linux操作系统中唯一地标志一个进程,在我们最常使用的I386架构(即PC使用的架构)上,一个非负的整数的变化范围是0-32767,这也是我们所有可能取到的进程ID。其实从进程ID的名字就可以看出,它就是进程的身份证号码,每个人的身份证号码都不会相同,每个进程的进程ID也不会相同。
一个或多个进程可以合起来构成一个进程组(process group),一个或多个进程组可以合起来构成一个会话(session)。这样我们就有了对进程进行批量操作的能力,比如通过向某个进程组发送信号来实现向该组中的每个进程发送信号。
最后,让我们通过ps命令亲眼看一看自己的系统中目前有多少进程在运行:
$ps -aux (以下是在我的计算机上的运行结果,你的结果很可能与这不同。)
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.1 0.4 1412 520 ? S May15 0:04 init [3]
root 2 0.0 0.0 0 0 ? SW May15 0:00 [keventd]
root 3 0.0 0.0 0 0 ? SW May15 0:00 [kapm-idled]
root 4 0.0 0.0 0 0 ? SWN May15 0:00 [ksoftirqd_CPU0]
root 5 0.0 0.0 0 0 ? SW May15 0:00 [kswapd]
root 6 0.0 0.0 0 0 ? SW May15 0:00 [kreclaimd]
root 7 0.0 0.0 0 0 ? SW May15 0:00 [bdflush]
root 8 0.0 0.0 0 0 ? SW May15 0:00 [kupdated]
root 9 0.0 0.0 0 0 ? SW< May15 0:00 [mdrecoveryd]
root 13 0.0 0.0 0 0 ? SW May15 0:00 [kjournald]
root 132 0.0 0.0 0 0 ? SW May15 0:00 [kjournald]
root 673 0.0 0.4 1472 592 ? S May15 0:00 syslogd -m 0
root 678 0.0 0.8 2084 1116 ? S May15 0:00 klogd -2
rpc 698 0.0 0.4 1552 588 ? S May15 0:00 portmap
rpcuser 726 0.0 0.6 1596 764 ? S May15 0:00 rpc.statd
root 839 0.0 0.4 1396 524 ? S May15 0:00 /usr/sbin/apmd -p
root 908 0.0 0.7 2264 1000 ? S May15 0:00 xinetd -stayalive
root 948 0.0 1.5 5296 1984 ? S May15 0:00 sendmail: accepti
root 967 0.0 0.3 1440 484 ? S May15 0:00 gpm -t ps/2 -m /d
wnn 987 0.0 2.7 4732 3440 ? S May15 0:00 /usr/bin/cserver
root 1005 0.0 0.5 1584 660 ? S May15 0:00 crond
wnn 1025 0.0 1.9 3720 2488 ? S May15 0:00 /usr/bin/tserver
xfs 1079 0.0 2.5 4592 3216 ? S May15 0:00 xfs -droppriv -da
daemon 1115 0.0 0.4 1444 568 ? S May15 0:00 /usr/sbin/atd
root 1130 0.0 0.3 1384 448 tty1 S May15 0:00 /sbin/mingetty tt
root 1131 0.0 0.3 1384 448 tty2 S May15 0:00 /sbin/mingetty tt
root 1132 0.0 0.3 1384 448 tty3 S May15 0:00 /sbin/mingetty tt
root 1133 0.0 0.3 1384 448 tty4 S May15 0:00 /sbin/mingetty tt
root 1134 0.0 0.3 1384 448 tty5 S May15 0:00 /sbin/mingetty tt
root 1135 0.0 0.3 1384 448 tty6 S May15 0:00 /sbin/mingetty tt
root 8769 0.0 0.6 1744 812 ? S 00:08 0:00 in.telnetd: 192.1
root 8770 0.0 0.9 2336 1184 pts/0 S 00:08 0:00 login -- lei
lei 8771 0.1 0.9 2432 1264 pts/0 S 00:08 0:00 -bash
lei 8809 0.0 0.6 2764 808 pts/0 R 00:09 0:00 ps -aux
以上除标题外,每一行都代表一个进程。在各列中,PID一列代表了各进程的进程ID,COMMAND一列代表了进程的名称或在Shell中调用的命令行,对其他列的具体含义,我就不再作解释,有兴趣的读者可以去参考相关书籍。
getpid
在2.4.4版内核中,getpid是第20号系统调用,其在Linux函数库中的原型是:
#include<sys/types.h> /* 提供类型pid_t的定义 */
#include<unistd.h> /* 提供函数的定义 */
pid_t getpid(void);
getpid的作用很简单,就是返回当前进程的进程ID,请大家看以下的例子:
/* getpid_test.c */
#include<unistd.h>
main()
{
printf("The current process ID is %d\n",getpid());
}
细心的读者可能注意到了,这个程序的定义里并没有包含头文件sys/types.h,这是因为我们在程序中没有用到pid_t类型,pid_t类型即为进程ID的类型。事实上,在i386架构上(就是我们一般PC计算机的架构),pid_t类型是和int类型完全兼容的,我们可以用处理整形数的方法去处理pid_t类型的数据,比如,用"%d"把它打印出来。
编译并运行程序getpid_test.c:
$gcc getpid_test.c -o getpid_test
$./getpid_test
The current process ID is 1980
(你自己的运行结果很可能与这个数字不一样,这是很正常的。)
再运行一遍:
$./getpid_test
The current process ID is 1981
正如我们所见,尽管是同一个应用程序,每一次运行的时候,所分配的进程标识符都不相同。
fork
在2.4.4版内核中,fork是第2号系统调用,其在Linux函数库中的原型是:
#include<sys/types.h> /* 提供类型pid_t的定义 */
#include<unistd.h> /* 提供函数的定义 */
pid_t fork(void);
|
只看fork的名字,可能难得有几个人可以猜到它是做什么用的。fork系统调用的作用是复制一个进程。当一个进程调用它,完成后就出现两个几乎一模一样的进程,我们也由此得到了一个新进程。据说fork的名字就是来源于这个与叉子的形状颇有几分相似的工作流程。
在Linux中,创造新进程的方法只有一个,就是我们正在介绍的fork。其他一些库函数,如system(),看起来似乎它们也能创建新的进程,如果能看一下它们的源码就会明白,它们实际上也在内部调用了fork。包括我们在命令行下运行应用程序,新的进程也是由shell调用fork制造出来的。fork有一些很有意思的特征,下面就让我们通过一个小程序来对它有更多的了解。
/* fork_test.c */
#include<sys/types.h>
#inlcude<unistd.h>
main()
{
pid_t pid;
/*此时仅有一个进程*/
pid=fork();
/*此时已经有两个进程在同时运行*/
if(pid<0)
printf("error in fork!");
else if(pid==0)
printf("I am the child process, my process ID is %d\n",getpid());
else
printf("I am the parent process, my process ID is %d\n",getpid());
}
编译并运行:
$gcc fork_test.c -o fork_test
$./fork_test
I am the parent process, my process ID is 1991
I am the child process, my process ID is 1992
看这个程序的时候,头脑中必须首先了解一个概念:在语句pid=fork()之前,只有一个进程在执行这段代码,但在这条语句之后,就变成两个进程在执行了,这两个进程的代码部分完全相同,将要执行的下一条语句都是if(pid==0)……。
两个进程中,原先就存在的那个被称作“父进程”,新出现的那个被称作“子进程”。父子进程的区别除了进程标志符(process ID)不同外,变量pid的值也不相同,pid存放的是fork的返回值。fork调用的一个奇妙之处就是它仅仅被调用一次,却能够返回两次,它可能有三种不同的返回值:
- 在父进程中,fork返回新创建子进程的进程ID;
- 在子进程中,fork返回0;
- 如果出现错误,fork返回一个负值;
fork出错可能有两种原因:(1)当前的进程数已经达到了系统规定的上限,这时errno的值被设置为EAGAIN。(2)系统内存不足,这时errno的值被设置为ENOMEM。(关于errno的意义,请参考本系列的第一篇文章。)
fork系统调用出错的可能性很小,而且如果出错,一般都为第一种错误。如果出现第二种错误,说明系统已经没有可分配的内存,正处于崩溃的边缘,这种情况对Linux来说是很罕见的。
说到这里,聪明的读者可能已经完全看懂剩下的代码了,如果pid小于0,说明出现了错误;pid==0,就说明fork返回了0,也就说明当前进程是子进程,就去执行printf("I am the child!"),否则(else),当前进程就是父进程,执行printf("I am the parent!")。完美主义者会觉得这很冗余,因为两个进程里都各有一条它们永远执行不到的语句。不必过于为此耿耿于怀,毕竟很多年以前,UNIX的鼻祖们在当时内存小得无法想象的计算机上就是这样写程序的,以我们如今的“海量”内存,完全可以把这几个字节的顾虑抛到九霄云外。
说到这里,可能有些读者还有疑问:如果fork后子进程和父进程几乎完全一样,而系统中产生新进程唯一的方法就是fork,那岂不是系统中所有的进程都要一模一样吗?那我们要执行新的应用程序时候怎么办呢?从对Linux系统的经验中,我们知道这种问题并不存在。至于采用了什么方法,我们把这个问题留到后面具体讨论。
exit
在2.4.4版内核中,exit是第1号调用,其在Linux函数库中的原型是:
#include<stdlib.h>
void exit(int status);
|
不像fork那么难理解,从exit的名字就能看出,这个系统调用是用来终止一个进程的。无论在程序中的什么位置,只要执行到exit系统调用,进程就会停止剩下的所有操作,清除包括PCB在内的各种数据结构,并终止本进程的运行。请看下面的程序:
/* exit_test1.c */
#include<stdlib.h>
main()
{
printf("this process will exit!\n");
exit(0);
printf("never be displayed!\n");
}
编译后运行:
$gcc exit_test1.c -o exit_test1
$./exit_test1
this process will exit!
我们可以看到,程序并没有打印后面的"never be displayed!\n",因为在此之前,在执行到exit(0)时,进程就已经终止了。
exit系统调用带有一个整数类型的参数status,我们可以利用这个参数传递进程结束时的状态,比如说,该进程是正常结束的,还是出现某种意外而结束的,一般来说,0表示没有意外的正常结束;其他的数值表示出现了错误,进程非正常结束。我们在实际编程时,可以用wait系统调用接收子进程的返回值,从而针对不同的情况进行不同的处理。关于wait的详细情况,我们将在以后的篇幅中进行介绍。
exit和_exit
作为系统调用而言,_exit和exit是一对孪生兄弟,它们究竟相似到什么程度,我们可以从Linux的源码中找到答案:
#define __NR__exit __NR_exit /* 摘自文件include/asm-i386/unistd.h第334行 */
“__NR_”是在Linux的源码中为每个系统调用加上的前缀,请注意第一个exit前有2条下划线,第二个exit前只有1条下划线。
这时随便一个懂得C语言并且头脑清醒的人都会说,_exit和exit没有任何区别,但我们还要讲一下这两者之间的区别,这种区别主要体现在它们在函数库中的定义。_exit在Linux函数库中的原型是:
#include<unistd.h>
void _exit(int status);
|
从图中可以看出,_exit()函数的作用最为简单:直接使进程停止运行,清除其使用的内存空间,并销毁其在内核中的各种数据结构;exit()函数则在这些基础上作了一些包装,在执行退出之前加了若干道工序,也是因为这个原因,有些人认为exit已经不能算是纯粹的系统调用。
exit()函数与_exit()函数最大的区别就在于exit()函数在调用exit系统调用之前要检查文件的打开情况,把文件缓冲区中的内容写回文件,就是图中的“清理I/O缓冲”一项。
在Linux的标准函数库中,有一套称作“高级I/O”的函数,我们熟知的printf()、fopen()、fread()、fwrite()都在此列,它们也被称作“缓冲I/O(buffered I/O)”,其特征是对应每一个打开的文件,在内存中都有一片缓冲区,每次读文件时,会多读出若干条记录,这样下次读文件时就可以直接从内存的缓冲区中读取,每次写文件的时候,也仅仅是写入内存中的缓冲区,等满足了一定的条件(达到一定数量,或遇到特定字符,如换行符\n和文件结束符EOF),再将缓冲区中的内容一次性写入文件,这样就大大增加了文件读写的速度,但也为我们编程带来了一点点麻烦。如果有一些数据,我们认为已经写入了文件,实际上因为没有满足特定的条件,它们还只是保存在缓冲区内,这时我们用_exit()函数直接将进程关闭,缓冲区中的数据就会丢失,反之,如果想保证数据的完整性,就一定要使用exit()函数。
请看以下例程:
从图中可以看出,_exit()函数的作用最为简单:直接使进程停止运行,清除其使用的内存空间,并销毁其在内核中的各种数据结构;exit()函数则在这些基础上作了一些包装,在执行退出之前加了若干道工序,也是因为这个原因,有些人认为exit已经不能算是纯粹的系统调用。
exit()函数与_exit()函数最大的区别就在于exit()函数在调用exit系统调用之前要检查文件的打开情况,把文件缓冲区中的内容写回文件,就是图中的“清理I/O缓冲”一项。
在Linux的标准函数库中,有一套称作“高级I/O”的函数,我们熟知的printf()、fopen()、fread()、fwrite()都在此列,它们也被称作“缓冲I/O(buffered I/O)”,其特征是对应每一个打开的文件,在内存中都有一片缓冲区,每次读文件时,会多读出若干条记录,这样下次读文件时就可以直接从内存的缓冲区中读取,每次写文件的时候,也仅仅是写入内存中的缓冲区,等满足了一定的条件(达到一定数量,或遇到特定字符,如换行符\n和文件结束符EOF),再将缓冲区中的内容一次性写入文件,这样就大大增加了文件读写的速度,但也为我们编程带来了一点点麻烦。如果有一些数据,我们认为已经写入了文件,实际上因为没有满足特定的条件,它们还只是保存在缓冲区内,这时我们用_exit()函数直接将进程关闭,缓冲区中的数据就会丢失,反之,如果想保证数据的完整性,就一定要使用exit()函数。
请看以下例程:
/* exit2.c */
#include<stdlib.h>
main()
{
printf("output begin\n");
printf("content in buffer");
exit(0);
}
编译并运行:
$gcc exit2.c -o exit2
$./exit2
output begin
content in buffer
/* _exit1.c */
#include<unistd.h>
main()
{
printf("output begin\n");
printf("content in buffer");
_exit(0);
}
编译并运行:
$gcc _exit1.c -o _exit1
$./_exit1
output begin
在Linux中,标准输入和标准输出都是作为文件处理的,虽然是一类特殊的文件,但从程序员的角度来看,它们和硬盘上存储数据的普通文件并没有任何区别。与所有其他文件一样,它们在打开后也有自己的缓冲区。
请读者结合前面的叙述,思考一下为什么这两个程序会得出不同的结果。相信如果您理解了我前面所讲的内容,会很容易的得出结论。
背景
在前面的文章中,我们已经了解了父进程和子进程的概念,并已经掌握了系统调用exit的用法,但可能很少有人意识到,在一个进程调用了exit之后,该进程并非马上就消失掉,而是留下一个称为僵尸进程(Zombie)的数据结构。在Linux进程的5种状态中,僵尸进程是非常特殊的一种,它已经放弃了几乎所有内存空间,没有任何可执行代码,也不能被调度,仅仅在进程列表中保留一个位置,记载该进程的退出状态等信息供其他进程收集,除此之外,僵尸进程不再占有任何内存空间。从这点来看,僵尸进程虽然有一个很酷的名字,但它的影响力远远抵不上那些真正的僵尸兄弟,真正的僵尸总能令人感到恐怖,而僵尸进程却除了留下一些供人凭吊的信息,对系统毫无作用。
也许读者们还对这个新概念比较好奇,那就让我们来看一眼Linux里的僵尸进程究竟长什么样子。
当一个进程已退出,但其父进程还没有调用系统调用wait(稍后介绍)对其进行收集之前的这段时间里,它会一直保持僵尸状态,利用这个特点,我们来写一个简单的小程序:
/* zombie.c */
#include <sys/types.h>
#include <unistd.h>
main()
{
pid_t pid;
pid=fork();
if(pid<0) /* 如果出错 */
printf("error occurred!\n");
else if(pid==0) /* 如果是子进程 */
exit(0);
else /* 如果是父进程 */
sleep(60); /* 休眠60秒,这段时间里,父进程什么也干不了 */
wait(NULL); /* 收集僵尸进程 */
}
sleep的作用是让进程休眠指定的秒数,在这60秒内,子进程已经退出,而父进程正忙着睡觉,不可能对它进行收集,这样,我们就能保持子进程60秒的僵尸状态。
编译这个程序:
$ cc zombie.c -o zombie
后台运行程序,以使我们能够执行下一条命令
$ ./zombie &
[1] 1577
列一下系统内的进程
$ ps -ax
... ...
1177 pts/0 S 0:00 -bash
1577 pts/0 S 0:00 ./zombie
1578 pts/0 Z 0:00 [zombie <defunct>]
1579 pts/0 R 0:00 ps -ax
看到中间的"Z"了吗?那就是僵尸进程的标志,它表示1578号进程现在就是一个僵尸进程。
我们已经学习了系统调用exit,它的作用是使进程退出,但也仅仅限于将一个正常的进程变成一个僵尸进程,并不能将其完全销毁。僵尸进程虽然对其他进程几乎没有什么影响,不占用CPU时间,消耗的内存也几乎可以忽略不计,但有它在那里呆着,还是让人觉得心里很不舒服。而且Linux系统中进程数目是有限制的,在一些特殊的情况下,如果存在太多的僵尸进程,也会影响到新进程的产生。那么,我们该如何来消灭这些僵尸进程呢?
先来了解一下僵尸进程的来由,我们知道,Linux和UNIX总有着剪不断理还乱的亲缘关系,僵尸进程的概念也是从UNIX上继承来的,而UNIX的先驱们设计这个东西并非是因为闲来无聊想烦烦其他的程序员。僵尸进程中保存着很多对程序员和系统管理员非常重要的信息,首先,这个进程是怎么死亡的?是正常退出呢,还是出现了错误,还是被其它进程强迫退出的?其次,这个进程占用的总系统CPU时间和总用户CPU时间分别是多少?发生页错误的数目和收到信号的数目。这些信息都被存储在僵尸进程中,试想如果没有僵尸进程,进程一退出,所有与之相关的信息都立刻归于无形,而此时程序员或系统管理员需要用到,就只好干瞪眼了。
那么,我们如何收集这些信息,并终结这些僵尸进程呢?就要靠我们下面要讲到的waitpid调用和wait调用。这两者的作用都是收集僵尸进程留下的信息,同时使这个进程彻底消失。下面就对这两个调用分别作详细介绍。
wait
wait的函数原型是:
#include <sys/types.h> /* 提供类型pid_t的定义 */
#include <sys/wait.h>
pid_t wait(int *status)
进程一旦调用了wait,就立即阻塞自己,由wait自动分析是否当前进程的某个子进程已经退出,如果让它找到了这样一个已经变成僵尸的子进程,wait就会收集这个子进程的信息,并把它彻底销毁后返回;如果没有找到这样一个子进程,wait就会一直阻塞在这里,直到有一个出现为止。
参数status用来保存被收集进程退出时的一些状态,它是一个指向int类型的指针。但如果我们对这个子进程是如何死掉的毫不在意,只想把这个僵尸进程消灭掉,(事实上绝大多数情况下,我们都会这样想),我们就可以设定这个参数为NULL,就象下面这样:
pid = wait(NULL);
如果成功,wait会返回被收集的子进程的进程ID,如果调用进程没有子进程,调用就会失败,此时wait返回-1,同时errno被置为ECHILD。
下面就让我们用一个例子来实战应用一下wait调用,程序中用到了系统调用fork,如果你对此不大熟悉或已经忘记了,请参考上一篇文章《进程管理相关的系统调用(一)》。
/* wait1.c */
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <stdlib.h>
main()
{
pid_t pc,pr;
pc=fork();
if(pc<0) /* 如果出错 */
printf("error ocurred!\n");
else if(pc==0){ /* 如果是子进程 */
printf("This is child process with pid of %d\n",getpid());
sleep(10); /* 睡眠10秒钟 */
}
else{ /* 如果是父进程 */
pr=wait(NULL); /* 在这里等待 */
printf("I catched a child process with pid of %d\n"),pr);
}
exit(0);
}
编译并运行:
$ cc wait1.c -o wait1
$ ./wait1
This is child process with pid of 1508
I catched a child process with pid of 1508
可以明显注意到,在第2行结果打印出来前有10秒钟的等待时间,这就是我们设定的让子进程睡眠的时间,只有子进程从睡眠中苏醒过来,它才能正常退出,也就才能被父进程捕捉到。其实这里我们不管设定子进程睡眠的时间有多长,父进程都会一直等待下去,读者如果有兴趣的话,可以试着自己修改一下这个数值,看看会出现怎样的结果。
参数status
如果参数status的值不是NULL,wait就会把子进程退出时的状态取出并存入其中,这是一个整数值(int),指出了子进程是正常退出还是被非正常结束的(一个进程也可以被其他进程用信号结束,我们将在以后的文章中介绍),以及正常结束时的返回值,或被哪一个信号结束的等信息。由于这些信息被存放在一个整数的不同二进制位中,所以用常规的方法读取会非常麻烦,人们就设计了一套专门的宏(macro)来完成这项工作,下面我们来学习一下其中最常用的两个:
1,WIFEXITED(status) 这个宏用来指出子进程是否为正常退出的,如果是,它会返回一个非零值。
(请注意,虽然名字一样,这里的参数status并不同于wait唯一的参数--指向整数的指针status,而是那个指针所指向的整数,切记不要搞混了。)
2,WEXITSTATUS(status) 当WIFEXITED返回非零值时,我们可以用这个宏来提取子进程的返回值,如果子进程调用exit(5)退出,WEXITSTATUS(status)就会返回5;如果子进程调用exit(7),WEXITSTATUS(status)就会返回7。请注意,如果进程不是正常退出的,也就是说,WIFEXITED返回0,这个值就毫无意义。
下面通过例子来实战一下我们刚刚学到的内容:
/* wait2.c */
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
main()
{
int status;
pid_t pc,pr;
pc=fork();
if(pc<0) /* 如果出错 */
printf("error ocurred!\n");
else if(pc==0){ /* 子进程 */
printf("This is child process with pid of %d.\n",getpid());
exit(3); /* 子进程返回3 */
}
else{ /* 父进程 */
pr=wait(&status);
if(WIFEXITED(status)){ /* 如果WIFEXITED返回非零值 */
printf("the child process %d exit normally.\n",pr);
printf("the return code is %d.\n",WEXITSTATUS(status));
}else /* 如果WIFEXITED返回零 */
printf("the child process %d exit abnormally.\n",pr);
}
}
编译并运行:
$ cc wait2.c -o wait2
$ ./wait2
This is child process with pid of 1538.
the child process 1538 exit normally.
the return code is 3.
父进程准确捕捉到了子进程的返回值3,并把它打印了出来。
当然,处理进程退出状态的宏并不止这两个,但它们当中的绝大部分在平时的编程中很少用到,就也不在这里浪费篇幅介绍了,有兴趣的读者可以自己参阅Linux man pages去了解它们的用法。
以下是Linux系统调用的一个列表,包含了大部分常用系统调用和由系统调用派生出的的函数。这可能是你在互联网上所能看到的唯一一篇中文注释的Linux系统调用列表,即使是简单的字母序英文列表,能做到这么完全也是很罕见的。
按照惯例,这个列表以man pages第2节,即系统调用节为蓝本。按照笔者的理解,对其作了大致的分类,同时也作了一些小小的修改,删去了几个仅供内核使用,不允许用户调用的系统调用,对个别本人稍觉不妥的地方作了一些小的修改,并对所有列出的系统调用附上简要注释。
其中有一些函数的作用完全相同,只是参数不同。(可能很多熟悉C++朋友马上就能联想起函数重载,但是别忘了Linux核心是用C语言写的,所以只能取成不同的函数名)。还有一些函数已经过时,被新的更好的函数所代替了(gcc在链接这些函数时会发出警告),但因为兼容的原因还保留着,这些函数我会在前面标上“*”号以示区别。
一、进程控制
fork | 创建一个新进程 |
clone | 按指定条件创建子进程 |
execve | 运行可执行文件 |
exit | 中止进程 |
_exit | 立即中止当前进程 |
getdtablesize | 进程所能打开的最大文件数 |
getpgid | 获取指定进程组标识号 |
setpgid | 设置指定进程组标志号 |
getpgrp | 获取当前进程组标识号 |
setpgrp | 设置当前进程组标志号 |
getpid | 获取进程标识号 |
getppid | 获取父进程标识号 |
getpriority | 获取调度优先级 |
setpriority | 设置调度优先级 |
modify_ldt | 读写进程的本地描述表 |
nanosleep | 使进程睡眠指定的时间 |
nice | 改变分时进程的优先级 |
pause | 挂起进程,等待信号 |
personality | 设置进程运行域 |
prctl | 对进程进行特定操作 |
ptrace | 进程跟踪 |
sched_get_priority_max | 取得静态优先级的上限 |
sched_get_priority_min | 取得静态优先级的下限 |
sched_getparam | 取得进程的调度参数 |
sched_getscheduler | 取得指定进程的调度策略 |
sched_rr_get_interval | 取得按RR算法调度的实时进程的时间片长度 |
sched_setparam | 设置进程的调度参数 |
sched_setscheduler | 设置指定进程的调度策略和参数 |
sched_yield | 进程主动让出处理器,并将自己等候调度队列队尾 |
vfork | 创建一个子进程,以供执行新程序,常与execve等同时使用 |
wait | 等待子进程终止 |
wait3 | 参见wait |
waitpid | 等待指定子进程终止 |
wait4 | 参见waitpid |
capget | 获取进程权限 |
capset | 设置进程权限 |
getsid | 获取会晤标识号 |
setsid | 设置会晤标识号 |
二、文件系统控制
1、文件读写操作
fcntl | 文件控制 |
open | 打开文件 |
creat | 创建新文件 |
close | 关闭文件描述字 |
read | 读文件 |
write | 写文件 |
readv | 从文件读入数据到缓冲数组中 |
writev | 将缓冲数组里的数据写入文件 |
pread | 对文件随机读 |
pwrite | 对文件随机写 |
lseek | 移动文件指针 |
_llseek | 在64位地址空间里移动文件指针 |
dup | 复制已打开的文件描述字 |
dup2 | 按指定条件复制文件描述字 |
flock | 文件加/解锁 |
poll | I/O多路转换 |
truncate | 截断文件 |
ftruncate | 参见truncate |
umask | 设置文件权限掩码 |
fsync | 把文件在内存中的部分写回磁盘 |
2、文件系统操作
access | 确定文件的可存取性 |
chdir | 改变当前工作目录 |
fchdir | 参见chdir |
chmod | 改变文件方式 |
fchmod | 参见chmod |
chown | 改变文件的属主或用户组 |
fchown | 参见chown |
lchown | 参见chown |
chroot | 改变根目录 |
stat | 取文件状态信息 |
lstat | 参见stat |
fstat | 参见stat |
statfs | 取文件系统信息 |
fstatfs | 参见statfs |
readdir | 读取目录项 |
getdents | 读取目录项 |
mkdir | 创建目录 |
mknod | 创建索引节点 |
rmdir | 删除目录 |
rename | 文件改名 |
link | 创建链接 |
symlink | 创建符号链接 |
unlink | 删除链接 |
readlink | 读符号链接的值 |
mount | 安装文件系统 |
umount | 卸下文件系统 |
ustat | 取文件系统信息 |
utime | 改变文件的访问修改时间 |
utimes | 参见utime |
quotactl | 控制磁盘配额 |
三、系统控制
ioctl | I/O总控制函数 |
_sysctl | 读/写系统参数 |
acct | 启用或禁止进程记账 |
getrlimit | 获取系统资源上限 |
setrlimit | 设置系统资源上限 |
getrusage | 获取系统资源使用情况 |
uselib | 选择要使用的二进制函数库 |
ioperm | 设置端口I/O权限 |
iopl | 改变进程I/O权限级别 |
outb | 低级端口操作 |
reboot | 重新启动 |
swapon | 打开交换文件和设备 |
swapoff | 关闭交换文件和设备 |
bdflush | 控制bdflush守护进程 |
sysfs | 取核心支持的文件系统类型 |
sysinfo | 取得系统信息 |
adjtimex | 调整系统时钟 |
alarm | 设置进程的闹钟 |
getitimer | 获取计时器值 |
setitimer | 设置计时器值 |
gettimeofday | 取时间和时区 |
settimeofday | 设置时间和时区 |
stime | 设置系统日期和时间 |
time | 取得系统时间 |
times | 取进程运行时间 |
uname | 获取当前UNIX系统的名称、版本和主机等信息 |
vhangup | 挂起当前终端 |
nfsservctl | 对NFS守护进程进行控制 |
vm86 | 进入模拟8086模式 |
create_module | 创建可装载的模块项 |
delete_module | 删除可装载的模块项 |
init_module | 初始化模块 |
query_module | 查询模块信息 |
*get_kernel_syms | 取得核心符号,已被query_module代替 |
四、内存管理
brk | 改变数据段空间的分配 |
sbrk | 参见brk |
mlock | 内存页面加锁 |
munlock | 内存页面解锁 |
mlockall | 调用进程所有内存页面加锁 |
munlockall | 调用进程所有内存页面解锁 |
mmap | 映射虚拟内存页 |
munmap | 去除内存页映射 |
mremap | 重新映射虚拟内存地址 |
msync | 将映射内存中的数据写回磁盘 |
mprotect | 设置内存映像保护 |
getpagesize | 获取页面大小 |
sync | 将内存缓冲区数据写回硬盘 |
cacheflush | 将指定缓冲区中的内容写回磁盘 |
五、网络管理
getdomainname | 取域名 |
setdomainname | 设置域名 |
gethostid | 获取主机标识号 |
sethostid | 设置主机标识号 |
gethostname | 获取本主机名称 |
sethostname | 设置主机名称 |
六、socket控制
socketcall | socket系统调用 |
socket | 建立socket |
bind | 绑定socket到端口 |
connect | 连接远程主机 |
accept | 响应socket连接请求 |
send | 通过socket发送信息 |
sendto | 发送UDP信息 |
sendmsg | 参见send |
recv | 通过socket接收信息 |
recvfrom | 接收UDP信息 |
recvmsg | 参见recv |
listen | 监听socket端口 |
select | 对多路同步I/O进行轮询 |
shutdown | 关闭socket上的连接 |
getsockname | 取得本地socket名字 |
getpeername | 获取通信对方的socket名字 |
getsockopt | 取端口设置 |
setsockopt | 设置端口参数 |
sendfile | 在文件或端口间传输数据 |
socketpair | 创建一对已联接的无名socket |
七、用户管理
getuid | 获取用户标识号 |
setuid | 设置用户标志号 |
getgid | 获取组标识号 |
setgid | 设置组标志号 |
getegid | 获取有效组标识号 |
setegid | 设置有效组标识号 |
geteuid | 获取有效用户标识号 |
seteuid | 设置有效用户标识号 |
setregid | 分别设置真实和有效的的组标识号 |
setreuid | 分别设置真实和有效的用户标识号 |
getresgid | 分别获取真实的,有效的和保存过的组标识号 |
setresgid | 分别设置真实的,有效的和保存过的组标识号 |
getresuid | 分别获取真实的,有效的和保存过的用户标识号 |
setresuid | 分别设置真实的,有效的和保存过的用户标识号 |
setfsgid | 设置文件系统检查时使用的组标识号 |
setfsuid | 设置文件系统检查时使用的用户标识号 |
getgroups | 获取后补组标志清单 |
setgroups | 设置后补组标志清单 |
八、进程间通信
ipc | 进程间通信总控制调用 |
sigaction | 设置对指定信号的处理方法 |
sigprocmask | 根据参数对信号集中的信号执行阻塞/解除阻塞等操作 |
sigpending | 为指定的被阻塞信号设置队列 |
sigsuspend | 挂起进程等待特定信号 |
signal | 参见signal |
kill | 向进程或进程组发信号 |
*sigblock | 向被阻塞信号掩码中添加信号,已被sigprocmask代替 |
*siggetmask | 取得现有阻塞信号掩码,已被sigprocmask代替 |
*sigsetmask | 用给定信号掩码替换现有阻塞信号掩码,已被sigprocmask代替 |
*sigmask | 将给定的信号转化为掩码,已被sigprocmask代替 |
*sigpause | 作用同sigsuspend,已被sigsuspend代替 |
sigvec | 为兼容BSD而设的信号处理函数,作用类似sigaction |
ssetmask | ANSI C的信号处理函数,作用类似sigaction |
msgctl | 消息控制操作 |
msgget | 获取消息队列 |
msgsnd | 发消息 |
msgrcv | 取消息 |
pipe | 创建管道 |
semctl | 信号量控制 |
semget | 获取一组信号量 |
semop | 信号量操作 |
shmctl | 控制共享内存 |
shmget | 获取共享内存 |
shmat | 连接共享内存 |
shmdt | 拆卸共享内存 |