TensorFlow 图像识别功能在树莓派上的应用

通过 TensorFlow 1.0,数据工程师利用 Raspberry Pi 摄像头进行火车分类,解决加州火车到站时间预测问题。文章详细介绍了如何在树莓派上配置和测试 TensorFlow 模型,以及解决在 ARM 芯片上运行 TensorFlow 的挑战。

上周 TensorFlow 1.0 的发布使之成为最有前景的深度学习框架,也在中国 AI 社区中掀起了学习 TensorFlow 的热潮,不过光跑例子怎能脱颖而出?本文是数据科学公司(Silicon Valley Data Science)的数据工程师 Matt Rubashkin 的一篇实战派文章,介绍了他如何创造性的将深度学习与物联网结合起来解决一个实际问题的思路和过程,非常具有启发性。

SVDS(Silicon Valley Data Science)曾使用过实时、公开的数据来优化对加州火车到达时间的预测。但是,加州火车的到站时间数据不可靠,因此难以准确预测。我们使用 Raspberry Pi 摄像头和 USB 麦克风,能够侦测到火车的经过及其速度和方向。当在 Mountain View 办公室里装配了一台新的 Raspberry Pi 时,我们遇到了一个棘手的问题:Pi 不单单侦测到了加州火车(true positive),也侦测到了太平洋联合货运的火车和 VTA 轻轨(false positive)。为了确保侦测到的是加州火车的延迟,我们不得不对不同的火车做个靠谱的分类。

图片描述

视频: https://youtu.be/n0lCPXzaxTg

传统的背景图像分类技术是远远不够的,因为我们在整个加州火车系统的铁轨上——包括不同的距离,不同的方向,不同的高度——放满了 Raspberry Pi。而且我们的操作时间也很有限,没有足够的时间来为系统里每一个 RaspberryPi 手动选择模式和特征。

用 TensorFlow 解围

幸好是在2016年遇到这个图像分类问题,因为在这一年里很多深度学习相关的图像识别技术的代码被公开了。我们选择使用 Google 的 TensorFlow

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值