Happy 2004
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Problem Description
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29).
Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3, 4, 6, 12, 167, 334, 501, 668, 1002 and 2004. Therefore S = 4704 and S modulo 29 is equal to 6.
Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3, 4, 6, 12, 167, 334, 501, 668, 1002 and 2004. Therefore S = 4704 and S modulo 29 is equal to 6.
Input
The input consists of several test cases. Each test case contains a line with the integer X (1 <= X <= 10000000).
A test case of X = 0 indicates the end of input, and should not be processed.
A test case of X = 0 indicates the end of input, and should not be processed.
Output
For each test case, in a separate line, please output the result of S modulo 29.
Sample Input
1 10000 0
Sample Output
6 10gcd(a,b)==1 && s(a,b)==s(a)*s(b)满足这种条件的s叫做积性函数,本题求的因子和就是一个积性函数
接着有一个结论
if(prime[p])s(p^n)=1+p^1+p^2+p^n=(p^(n+1)-1)/(p-1)
s(2004^n)=s(2^(2n))*s(3^n)*s(167^n)
其中,167和22关于29同余
所以,s(2004^n)=s(2^(2n))*s(3^n)*s(22^n)
a=s(2^(2n))=(2^(2n+1)-1)
b=s(3^n)=(3^(n+1)-1)/2
c=s(22^n)=(22^(n+1)-1)/21
数太大,每步求余,除法求余的规则是,除以一个数求余的结果和乘以除数的乘法逆元的求余结果相同
求出2和21的乘法逆元这道题就做完了
#include <iostream> #include <cstring> using namespace std; int qpow(int a,int b) { int ans=1,buff=a ; while(b) { if(b & 1) ans = ans * buff % 29; buff = buff * buff % 29; b >>= 1; } return ans; } int main() { int x; while(~scanf("%d",&x),x) { int a=(qpow(2,2*x+1)-1)%29; int b=(qpow(3,x+1)-1)*(-14)%29; int c=(qpow(167,x+1)-1)*(-11)%29; printf("%d\n",a*b*c%29); } return 0 ; }