给你一个整数序列 让你满足Q个关系 l - r 区间内异或的数值为 p[i]
能则构造一个线段树 不能则输出NO
我们用贪心的思路去是1就与上所有1 是0 就与上0
最后看异或出来的值是否和p[i]相等即可
/*
if you can't see the repay
Why not just work step by step
rubbish is relaxed
to ljq
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <vector>
#include <stdlib.h>
#include <algorithm>
using namespace std;
#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define dbg2(x1,x2) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x1,x2,x3) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
#define lc (rt<<1)
#define rc (rt<<11)
#define mid ((l+r)>>1)
typedef pair<int,int> pll;
typedef long long ll;
const int inf = (1<<30)-1;
const int _inf = 0xc0c0c0c0;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll _INF = 0xc0c0c0c0c0c0c0c0;
const ll mod = (int)1e9+7;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){int ans=1;while(b){if(b&1) ans=(ans*a)%mod;a=(a*a)%mod;b>>=1;}return ans;}
ll inv2(ll a,ll mod){return ksm(a,mod-2,mod);}
void exgcd(ll a,ll b,ll &x,ll &y,ll &d){if(!b) {d = a;x = 1;y=0;}else{exgcd(b,a%b,y,x,d);y-=x*(a/b);}}//printf("%lld*a + %lld*b = %lld\n", x, y, d);
const int MAX_N = 100025;
int s[MAX_N<<2],col[MAX_N<<2],l[MAX_N],r[MAX_N],p[MAX_N];
void down(int rt,int l,int r)
{
if(col[rt]!=inf)
{
col[rt<<1] &= col[rt];
col[rt<<1|1] &= col[rt];
s[rt<<1] &= s[rt];
s[rt<<1|1] &= s[rt];
col[rt] = inf;
}
}
void build(int rt,int l,int r)
{
s[rt] = col[rt] = inf;
if(l==r)
{
return ;
}
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
}
void update(int rt,int l,int r,int x,int y,int v)
{
if(x<=l&&r<=y)
{
s[rt]&=v;
col[rt]&=v;
return ;
}
down(rt,l,r);
if(x<=mid) update(rt<<1,l,mid,x,y,v);
if(mid<y) update(rt<<1|1,mid+1,r,x,y,v);
}
int query(int rt,int l,int r,int x,int y)
{
if(x<=l&&r<=y)
return s[rt];
down(rt,l,r);
int res = 0;
if(x<=mid) res |= query(rt<<1,l,mid,x,y);
if(mid<y) res |= query(rt<<1|1,mid+1,r,x,y);
return res;
}
int main()
{
//ios::sync_with_stdio(false);
//freopen("a.txt","r",stdin);
//freopen("b.txt","w",stdout);
int n,Q;
scanf("%d%d",&n,&Q);
build(1,1,n);
for(int i = 1;i<=Q;++i)
{
scanf("%d%d%d",&l[i],&r[i],&p[i]);
update(1,1,n,l[i],r[i],p[i]);
}
for(int i = 1;i<=Q;++i)
{
if(query(1,1,n,l[i],r[i])!=p[i])
{
printf("No\n");
return 0;
}
}
printf("Yes\n");
for(int i = 1;i<=n;++i)
{
i==n?printf("%d\n",query(1,1,n,i,i)):printf("%d ",query(1,1,n,i,i));
}
//fclose(stdin);
//fclose(stdout);
//cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
return 0;
}