BZOJ 5334
题意 给你n个操作 1 y 操作是把原值乘上一个 y
2 y 操作是把原值除以第y次操作的值
输出每次操作后的值
因为是乘积
所以你按照修改次数建一颗线段树
那么你 1 操作就是把第 i 次操作单点修改为 y
2 操作就是把第 y 次操作单点修改为1
然后每次输出s[1]即可
/*
if you can't see the repay
Why not just work step by step
rubbish is relaxed
to ljq
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <vector>
#include <stdlib.h>
#include <algorithm>
using namespace std;
#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define dbg2(x1,x2) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x1,x2,x3) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
#define lc (rt<<1)
#define rc (rt<<11)
#define mid ((l+r)>>1)
typedef pair<int,int> pll;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll _INF = 0xc0c0c0c0c0c0c0c0;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll ksm(ll a,ll b,ll mod){int ans=1;while(b){if(b&1) ans=(ans*a)%mod;a=(a*a)%mod;b>>=1;}return ans;}
ll inv2(ll a,ll mod){return ksm(a,mod-2,mod);}
void exgcd(ll a,ll b,ll &x,ll &y,ll &d){if(!b) {d = a;x = 1;y=0;}else{exgcd(b,a%b,y,x,d);y-=x*(a/b);}}//printf("%lld*a + %lld*b = %lld\n", x, y, d);
const int MAX_N = 100025;
int mod;
ll s[MAX_N<<2];
void up(int rt)
{
s[rt] = s[rt<<1] * s[rt<<1|1] %mod;
}
void build(int rt,int l,int r)
{
s[rt] = 1;
if(l==r)
{
return ;
}
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
up(rt);
}
void update(int rt,int l,int r,int x,int v)
{
if(l==r)
{
s[rt] = v%mod;
return ;
}
if(x<=mid) update(rt<<1,l,mid,x,v);
else update(rt<<1|1,mid+1,r,x,v);
up(rt);
}
int main()
{
//ios::sync_with_stdio(false);
//freopen("a.txt","r",stdin);
//freopen("b.txt","w",stdout);
int t,n,x,y;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&mod);
build(1,1,n);
for(int i = 1;i<=n;++i)
{
scanf("%d%d",&x,&y);
if(x==1)
{
update(1,1,n,i,y);
printf("%lld\n",s[1]);
}
else
{
update(1,1,n,y,1);
printf("%lld\n",s[1]);
}
}
}
//fclose(stdin);
//fclose(stdout);
//cout << "time: " << (long long)clock() * 1000 / CLOCKS_PER_SEC << " ms" << endl;
return 0;
}