hdu 1576 ex_gcd

A/B

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2805    Accepted Submission(s): 2073


Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
 

Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
 

Output
对应每组数据输出(A/B)%9973。
 

Sample Input
  
2 1000 53 87 123456789
 

Sample Output
  
7922 6060
 

Author
xhd
 

Source
#include <iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#define ll long long
using namespace std;
//扩展gcd,求ax+by=gcd(a,b)的解
int e_gcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    ll ans=e_gcd(b,a%b,x,y);
    ll tmp=x;
    x=y;
    y=tmp-a/b*y;
    return ans;
}
//求线性同余方程最小解
int cal(ll a,ll b,ll c)
{
    ll x,y;
    ll gcd=e_gcd(a,b,x,y);
    if(c%gcd!=0) return -1;
    x*=c/gcd;
    b/=gcd;
    if(b<0) b=-b;
    ll ans=x%b;
    if(ans<=0) ans+=b;
    return ans;
}
int main()
{
   int t;
   cin>>t;
   while(t--)
   {
       ll n,B;
       cin>>n>>B;
       //x*B-y*9973=n
       ll ans=cal(B,-9973,n);
       printf("%I64d\n",ans);
   }

}

内容概要:本文详细探讨了基于阻尼连续可调减振器(CDC)的半主动悬架系统的控制策略。首先建立了CDC减振器的动力学模型,验证了其阻尼特性,并通过实验确认了模型的准确性。接着,搭建了1/4车辆悬架模型,分析了不同阻尼系数对悬架性能的影响。随后,引入了PID、自适应模糊PID和模糊-PID并联三种控制策略,通过仿真比较它们的性能提升效果。研究表明,模糊-PID并联控制能最优地提升悬架综合性能,在平顺性和稳定性间取得最佳平衡。此外,还深入分析了CDC减振器的特性,优化了控制策略,并进行了系统级验证。 适用人群:从事汽车工程、机械工程及相关领域的研究人员和技术人员,尤其是对车辆悬架系统和控制策略感兴趣的读者。 使用场景及目标:①适用于研究和开发基于CDC减振器的半主动悬架系统的工程师;②帮助理解不同控制策略(如PID、模糊PID、模糊-PID并联)在悬架系统中的应用及其性能差异;③为优化车辆行驶舒适性和稳定性提供理论依据和技术支持。 其他说明:本文不仅提供了详细的数学模型和仿真代码,还通过实验数据验证了模型的准确性。对于希望深入了解CDC减振器工作原理及其控制策略的读者来说,本文是一份极具价值的参考资料。同时,文中还介绍了多种控制策略的具体实现方法及其优缺点,为后续的研究和实际应用提供了有益的借鉴。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值