Description
You are given an array A , and Zhu wants to know there are how many different array B satisfy the following conditions?
- 1≤Bi≤Ai
- For each pair(l,r) (1≤l≤r≤n) , gcd(bl,bl+1...br)≥2
Input
The first line is an integer T(1≤T≤10) describe the number of test cases.
Each test case begins with an integer number n describe the size of array A .
Then a line contains n numbers describe each element of A
You can assume that 1≤n,Ai≤105
Output
For the kth test case , first output “Case #k: ” , then output an integer as answer in a single line . because the answer may be large , so you are only need to output answer mod 109+7
Sample Input
1
4
4 4 4 4
Sample Output
Case #1: 17
题意
给出数组 A ,问有多个种 B 数组满足所给条件。
思路
针对条件,我们可以枚举 gcd ,显然对于每一个素因子 i 在范围 [i,j] 下共有 ji 个数可以整除它,假设 A 中共有 cnt 个数字处于 [j,j+i−1] 这个范围内,这也就相当于有 cnt 个位置的数可以在 ji 个因子中随意变动,共有 (ji)cnt 种方案,而对于每一个因子,其结果为 ∑i|j(ji)cnt 。
最终通过容斥或者莫比乌斯去掉重复部分即可。
AC 代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include<iostream>
using namespace std ;
#define inf 0x3f3f3f
typedef __int64 LL;
const int maxn = 1e5+10;
const int mod = 1e9+7;
LL mu[maxn];
LL sum[maxn<<1];
LL cnt[maxn<<1];
void init()
{
mu[1]=1;
for(int i=1; i<maxn; i++)
for(int j=i+i; j<maxn; j+=i)
mu[j]-=mu[i];
}
LL mult(LL a,LL n)
{
LL res=1;
while(n)
{
if(n&1)res=(res*a)%mod;
a=(a*a)%mod;
n>>=1;
}
return res;
}
int main()
{
ios::sync_with_stdio(false);
init();
int T;
cin>>T;
for(int ti=1; ti<=T; ti++)
{
int n,minn=inf;
memset(cnt,0,sizeof(cnt));
cin>>n;
for(int i=0; i<n; i++)
{
int x;
cin>>x;
cnt[x]++;
minn=min(minn,x);
}
LL ans=0;
for(int i=1; i<maxn*2; i++)
sum[i]=sum[i-1]+cnt[i];
for(int i=2; i<=minn; i++)
{
LL temp=1LL;
if(mu[i])
{
for(int j=i; j<maxn; j+=i)
temp=(temp*mult(j/i,sum[j+i-1]-sum[j-1]))%mod;
}
ans=(ans-temp*mu[i]+mod)%mod;
}
cout<<"Case #"<<ti<<": "<<ans<<endl;
}
return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71