简单DP(时间段类)

此算法问题探讨了如何安排奶牛Bessie的挤奶时间以最大化其产奶量,考虑到不同时间段的效率及必要的休息时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

阅读数:501

Milking Time

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 5896 Accepted: 2462

Description

Bessie is such a hard-working cow. In fact, she is so focused on maximizing her productivity that she decides to schedule her next N (1 ≤ N ≤ 1,000,000) hours (conveniently labeled 0..N-1) so that she produces as much milk as possible.

Farmer John has a list of M (1 ≤ M ≤ 1,000) possibly overlapping intervals in which he is available for milking. Each interval i has a starting hour (0 ≤ starting_houriN), an ending hour (starting_houri < ending_houriN), and a corresponding efficiency (1 ≤ efficiencyi ≤ 1,000,000) which indicates how many gallons of milk that he can get out of Bessie in that interval. Farmer John starts and stops milking at the beginning of the starting hour and ending hour, respectively. When being milked, Bessie must be milked through an entire interval.

Even Bessie has her limitations, though. After being milked during any interval, she must rest R (1 ≤ RN) hours before she can start milking again. Given Farmer Johns list of intervals, determine the maximum amount of milk that Bessie can produce in the N hours.

Input

* Line 1: Three space-separated integers: N, M, and R
* Lines 2..M+1: Line i+1 describes FJ's ith milking interval withthree space-separated integers: starting_houri , ending_houri , and efficiencyi

Output

* Line 1: The maximum number of gallons of milk that Bessie can product in the N hours

Sample Input

12 4 2
1 2 8
10 12 19
3 6 24
7 10 31

Sample Output

43
题意给定一个时间间隔N在这个时间间隔内有M段段时间给出这M段时间每段的工作量和开始终止时间求N时间最大工作量每段工作后要休息R(将R算在每个时间段的结尾)

 

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#define N 0x3f3f3f3f
using namespace std;
struct ac
{
	int s,e,l;
}r[1010];
int dp[1010];
int cmp(ac x,ac y)
{
	return x.e<y.e;
}
int main()
{
	int t,n,m;
	cin>>t>>n>>m;
	for(int i=1;i<=n;i++)
	{
		cin>>r[i].s>>r[i].e>>r[i].l;
	}
	sort(r+1,r+n+1,cmp);
	int maxx=0; 
	for(int i=1;i<=n;i++)
	{
		dp[i]=r[i].l;
		for(int j=1;j<i;j++)
		{
			if(r[j].e+m<=r[i].s)//条件是 前者加上休息时间m 小于或者等于 后者的开始时间 
			{
				//dp[i] 用来存储i的值
				//dp[j]+r[i].l 表示上次dp[j]的最大值与i的最大值相加 
				//比较两者的大小 
				dp[i]=max(dp[i],dp[j]+r[i].l);
				
			}
		}
		maxx=max(maxx,dp[i]);
	}
	cout<<maxx<<endl;
	return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值