Python 学习笔记

1,字符串,列表切片

a='hello'

a[2:4];  表示llo

b=['b', 'a', 3, 5, 6];

b[1:1];表示['a']


2,居然可以这样

a, b = b, a+b;

一行表达式里计算多个值

变量赋值前,右边首先完成计算。右边的表达式从左到右计算。


3,缩进是 Python 是 Python 组织語句的方法。 Python (还) 不提供集成的行编辑功能,所以你要为每一个缩进行输入 TAB 或空格。

同一个语句块中的语句块必须缩进同样数量的空白。


4,for,range,list迭代器


5,函数def

一个函数定义会在当前符号表内引入函数名。 函数名指代的值(即函数体)有一个被Python解释器认定为 用户自定义函数 的类型。 这个值可以赋予其他的名字(即变量名),然后它也可以被当做函数使用。

全局变量不能在函数中直接赋值(除非用 global 语句命名),尽管他们可以被引用。


插曲:编码风格

  • 使用 4 空格缩进,而非 TAB。

    在小缩进(可以嵌套更深)和大缩进(更易读)之间,4空格是一个很好的折中。TAB 引发了一些混乱,最好弃用。

  • 折行以确保其不会超过 79 个字符。

    这有助于小显示器用户阅读,也可以让大显示器能并排显示几个代码文件。

  • 使用空行分隔函数和类,以及函数中的大块代码。

  • 可能的话,注释独占一行

  • 使用文档字符串

  • 把空格放到操作符两边,以及逗号后面,但是括号里侧不加空格: a = f(1, 2) + g(3, 4)

  • 统一函数和类命名。

    推荐类名用 驼峰命名, 函数和方法名用 小写_和_下划线。总是用 self 作为方法的第一个参数(关于类和方法的知识详见 初识类 )。

  • 不要使用花哨的编码,如果你的代码的目的是要在国际化环境。 Python的默认情况下,UTF-8,甚至普通的ASCII总是工作的最好。

  • 同样,也不要使用非ASCII字符的标识符,除非是不同语种的会阅读或者维护代码。






先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值