【spark exception】org.apache.spark.SparkException java.lang.ArrayIndexOutOfBoundsException 造成数组越界

本文解决了一个在使用 Spark SQL 向 Hive 表插入数据时遇到的 ArrayIndexOutOfBoundsException 异常,原因是插入表的字段数与源表不匹配。通过增加默认值使字段数一致,解决了问题。

【spark exception】org.apache.spark.SparkException  java.lang.ArrayIndexOutOfBoundsException 造成数组越界

当执行以下spark-sql是时候

insert overwrite table hive_user_income_detail_daily partition (pday='20190620',is_data_return='1')

select rr.user_id,rr.src,rr.app_id,rr.type,rr.create_time,rr.product_code

from tmp_hive_user_income_table rr

原因分析及解决办法:

insert overwrite table的 hive_user_income_detail_daily 这个表的建表字段数目必须和tmp_hive_user_income_table的字段数目保持一致

经过确认,hive_user_income_detail_daily有7个字段(除两个分区字段外),而select 语句中只给出了6个字段,所以将缺少的那个字段手动添加上默认值就可以正常运行啦

insert overwrite table hive_user_income_detail_daily partition (pday='20190620',is_data_return='1')

select rr.user_id,rr.src,rr.app_id,rr.type,rr.create_time,rr.product_code,'none'

from tmp_hive_user_income_table rr

详细报错信息如下:

19/06/28 16:03:14 ERROR LzoCodec: Failed to load/initialize native-lzo library
[Stage 19:======>                                              (52 + 121) / 401]19/06/28 16:04:31 ERROR TaskSetManager: Task 53 in stage 19.0 failed 4 times; aborting job
19/06/28 16:04:31 ERROR SparkHiveShell: Failed: Error 
org.apache.spark.SparkException: Job aborted due to stage failure: Task 53 in stage 19.0 failed 4 times, most recent failure: Lost task 53.3 in stage 19.0 (TID 3424, 10.160.147.93): java.lang.ArrayIndexOutOfBoundsException: 11
    at org.apache.spark.sql.catalyst.expressions.GenericMutableRow.genericGet(rows.scala:254)
    at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow$class.getAs(rows.scala:35)
    at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow$class.isNullAt(rows.scala:36)
    at org.apache.spark.sql.catalyst.expressions.GenericMutableRow.isNullAt(rows.scala:248)
    at org.apache.spark.sql.hive.SaveAsHiveFile$$anonfun$writeToFile$1$1.apply(SaveAsHiveFile.scala:113)
    at org.apache.spark.sql.hive.SaveAsHiveFile$$anonfun$writeToFile$1$1.apply(SaveAsHiveFile.scala:110)
    at scala.collection.Iterator$class.foreach(Iterator.scala:727)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
    at org.apache.spark.sql.hive.SaveAsHiveFile$class.writeToFile$1(SaveAsHiveFile.scala:110)
    at org.apache.spark.sql.hive.SaveAsHiveFile$$anonfun$saveAsHiveFile$5.apply(SaveAsHiveFile.scala:91)
    at org.apache.spark.sql.hive.SaveAsHiveFile$$anonfun$saveAsHiveFile$5.apply(SaveAsHiveFile.scala:91)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
    at org.apache.spark.scheduler.Task.run(Task.scala:89)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:724)
Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1475)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1463)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1462)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1462)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:843)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:843)
    at scala.Option.foreach(Option.scala:236)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:843)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1684)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1643)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1632)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:664)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1844)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1933)
    at org.apache.spark.sql.hive.SaveAsHiveFile$class.saveAsHiveFile(SaveAsHiveFile.scala:91)
    at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.saveAsHiveFile(InsertIntoHiveTable.scala:50)
    at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.sideEffectResult$lzycompute(InsertIntoHiveTable.scala:204)
    at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.sideEffectResult(InsertIntoHiveTable.scala:129)
    at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.doExecute(InsertIntoHiveTable.scala:294)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:135)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:133)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:133)
    at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
    at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)
    at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:145)
    at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:130)
    at org.apache.spark.sql.DataFrame$.apply(DataFrame.scala:52)
    at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:817)
    at org.apache.spark.sql.hive.xitong.shell.SparkHiveShell$$anonfun$org$apache$spark$sql$hive$xitong$shell$SparkHiveShell$$run$1$1.apply(SparkHiveShell.scala:172)
    at org.apache.spark.sql.hive.xitong.shell.SparkHiveShell$$anonfun$org$apache$spark$sql$hive$xitong$shell$SparkHiveShell$$run$1$1.apply(SparkHiveShell.scala:108)
    at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
    at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
    at org.apache.spark.sql.hive.xitong.shell.SparkHiveShell$.org$apache$spark$sql$hive$xitong$shell$SparkHiveShell$$run$1(SparkHiveShell.scala:108)
    at org.apache.spark.sql.hive.xitong.shell.SparkHiveShell$.process$1(SparkHiveShell.scala:212)
    at org.apache.spark.sql.hive.xitong.shell.SparkHiveShell$.org$apache$spark$sql$hive$xitong$shell$SparkHiveShell$$loop$1(SparkHiveShell.scala:250)
    at org.apache.spark.sql.hive.xitong.shell.SparkHiveShell$$anonfun$main$2.apply(SparkHiveShell.scala:58)
    at org.apache.spark.sql.hive.xitong.shell.SparkHiveShell$$anonfun$main$2.apply(SparkHiveShell.scala:42)
    at scala.Option.map(Option.scala:145)
    at org.apache.spark.sql.hive.xitong.shell.SparkHiveShell$.main(SparkHiveShell.scala:42)
    at org.apache.spark.sql.hive.xitong.shell.SparkHiveShell.main(SparkHiveShell.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:601)
    at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:733)
    at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
    at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ArrayIndexOutOfBoundsException: 11
    at org.apache.spark.sql.catalyst.expressions.GenericMutableRow.genericGet(rows.scala:254)
    at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow$class.getAs(rows.scala:35)
    at org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow$class.isNullAt(rows.scala:36)
    at org.apache.spark.sql.catalyst.expressions.GenericMutableRow.isNullAt(rows.scala:248)
    at org.apache.spark.sql.hive.SaveAsHiveFile$$anonfun$writeToFile$1$1.apply(SaveAsHiveFile.scala:113)
    at org.apache.spark.sql.hive.SaveAsHiveFile$$anonfun$writeToFile$1$1.apply(SaveAsHiveFile.scala:110)
    at scala.collection.Iterator$class.foreach(Iterator.scala:727)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
    at org.apache.spark.sql.hive.SaveAsHiveFile$class.writeToFile$1(SaveAsHiveFile.scala:110)
    at org.apache.spark.sql.hive.SaveAsHiveFile$$anonfun$saveAsHiveFile$5.apply(SaveAsHiveFile.scala:91)
    at org.apache.spark.sql.hive.SaveAsHiveFile$$anonfun$saveAsHiveFile$5.apply(SaveAsHiveFile.scala:91)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
    at org.apache.spark.scheduler.Task.run(Task.scala:89)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:724)
[Stage 19:======>                                              (52 + 122) / 401]Moved to trash: /home/spark/cache/hdp-jinke-data/.sparkStaging/application_1556532226104_2105277
19/06/28 16:04:34 ERROR YarnClientSchedulerBackend: Yarn application has already exited with state FINISHED!

 

 

<think> 嗯,用户提供了几个关于Spark中的ArrayIndexOutOfBoundsException异常的引用,但最终问题是针对特定错误代码"java.lang.ArrayIndexOutOfBoundsException: 96"的解决方案。我需要综合引用信息和Spark原理给出针对性建议。 用户引用[1]展示了BypassMergeSortShuffleWriter.write方法报错,这通常与shuffle分区数有关。引用[2]提到executor丢失任务,引用[3][4]则分别展示了依赖冲突和序列化问题的解决方案。虽然错误代码不同(10582/28499),但根本原因类似。 关键点在于:96这个偏移量数字很可能是某个数组的索引越界。结合Spark架构,可能出现在: 1. shuffle操作时分区计算错误(如repartition分区数设置不当) 2. 自定义分区器逻辑缺陷 3. 数据倾斜导致某个分区的数据量远超预期 4. 第三方库冲突(如paranamer缺失导致序列化问题) 用户明确使用Scala+Spark环境,需要优先检查: - 分区配置:spark.default.parallelism和shuffle分区数 - 自定义代码:特别是涉及数组索引操作的部分 - 依赖树:用mvn dependency:tree检查冲突 - 数据分布:通过spark UI观察stage失败时的数据倾斜情况 考虑到用户引用了paranamer的解决方案[^4],虽然错误码不同,但同样需要检查序列化问题。建议用户先尝试最通用的分区数调整方案,因为96这个数字接近100,很可能是默认分区数设置不合理导致。 最后需要提醒用户检查堆栈定位精确报错位置,不同组件(如shuffle/serialization)的报错需要不同处理方式。 </think>针对 Scala 编写 Spark 任务时出现 `java.lang.ArrayIndexOutOfBoundsException: 96` 错误,结合引用信息和 Spark 机制,以下是系统化的排查和解决方案: --- ### 核心排查方向与解决方案 1. **Shuffle 分区数不合理**(最常见) - **问题根源**:`96` 可能是分区索引越界(如实际分区数 < 96),常见于 `repartition`、`groupBy` 等操作。引用中 `BypassMergeSortShuffleWriter` 报错[^1] 与此直接相关。 - **解决方案**: - 检查分区数设置: ```scala spark.conf.set("spark.sql.shuffle.partitions", "200") // 建议调整为合理值(如总核心数2-3倍) ``` - 或在代码中显式指定: ```scala dataFrame.repartition(100) // 确保分区数 > 96 ``` 2. **自定义分区器(Partitioner)缺陷** - **问题根源**:自定义的 `Partitioner` 返回的分区索引超出范围(如 `numPartitions=50` 但返回了索引96)。 - **解决方案**: - 验证分区器逻辑: ```scala class CustomPartitioner(partitions: Int) extends Partitioner { override def numPartitions: Int = partitions // 确保此值 >= 所有返回的索引 override def getPartition(key: Any): Int = { val idx = ... // 计算逻辑 require(idx < partitions, s"分区索引 $idx 超出范围") // 添加校验 idx } } ``` 3. **数据倾斜导致索引越界** - **问题根源**:极端数据分布使某个分区的数据量爆炸式增长,触发底层数组越界- **解决方案**: - 使用 **盐值技术(Salting)** 打散倾斜 Key: ```scala val saltedRDD = rdd.map { key => val salt = Random.nextInt(100) // 添加随机前缀 (s"$salt-$key", value) } .reduceByKey(_ + _) // 聚合 .map { case (saltedKey, sum) => val originalKey = saltedKey.split("-", 2)(1) // 去除盐值 (originalKey, sum) } ``` 4. **依赖库冲突**(如引用[^4]案例) - **问题根源**:第三方库(如序列化工具)版本不兼容导致数组访问异常。 - **解决方案**: - 在 `pom.xml` 中添加必要的依赖(如 Paranamer): ```xml <dependency> <groupId>com.thoughtworks.paranamer</groupId> <artifactId>paranamer</artifactId> <version>2.8</version> </dependency> ``` - 检查依赖冲突: ```bash mvn dependency:tree -Dverbose | grep conflict ``` 5. **序列化问题** - **问题根源**:Task 序列化/反序列化时索引计算错误(参考引用[^3][^4])。 - **解决方案**: - 确保所有闭变量可序列化: ```scala class SerializableObj extends Serializable { ... } // 实现序列化接口 ``` --- ### 关键调试步骤 1. **定位报错代码行**: - 查看完整堆栈(如 `org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write:151`[^1]),确定发生在 Shuffle 阶段。 2. **检查分区配置**: ```scala println(s"当前Shuffle分区数: ${spark.conf.get("spark.sql.shuffle.partitions")}") ``` 3. **分析数据分布**: ```scala rdd.mapPartitions(iter => Iterator(iter.size)) // 统计各分区数据量 .collect() .foreach(println) ``` --- ### 总结流程 ```mermaid graph TD A[报错 ArrayIndexOutOfBoundsException:96] --> B{是否发生在Shuffle阶段?} B ----> C[增大shuffle分区数] B ----> D[检查自定义分区器逻辑] C --> E[验证数据倾斜] D --> F[添加索引范围校验] E --> G[盐值技术优化] F --> H[检查依赖冲突] G --> I[添加Paranamer等依赖] H --> I ``` > **重要提示**:若调整分区数无效,优先检查自定义代码(如 UDF、Partitioner)中的数组操作逻辑,96 可能指向硬编码的数组索引。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值