文章目录
Representative Color Transform for Image Enhancement
作者:Hanul Kim1, Su-Min Choi2, Chang-Su Kim3, Yeong Jun Koh
单位:Seoul National University of Science and Technology 2Chungnam National University 3Korea University
Abstract
前人方法都是encode-decode方式,丢失细节;密集转化也限制颜色空间的迁移效果;
本文使用颜色迁移表征(RCT)表征颜色变化,根据输入和表征颜色相似性增强颜色,得到更好效果;
RCT determines different representative colors specialized in in- put images and estimates transformed colors for the repre- sentative colors. It then determines enhanced colors us- ing these transformed colors based on the similarity be- tween input and representative colors.
Introduction
- 问题
First, details of the input im- age are not preserved in the up-sampling process of the de- coder, even though they employ skip-connections. Second, these approaches train networks with fixe

文章提出了一种名为RepresentativeColorTransform(RCT)的新方法,用于解决图像增强中的细节丢失和固定输入尺寸问题。RCT通过学习大规模色彩迁移,利用输入图像的颜色表征来估计变换颜色,进而根据颜色相似性增强图像。相比于传统的encode-decode结构,RCT能更好地保留细节,并适用于任意分辨率的图像。实验表明,该方法在多个数据集上表现出色,提高了色彩强化的效果。
最低0.47元/天 解锁文章





