4月8日 JavaWeb 周日

本文通过一个简单的HTML页面展示了如何使用JavaScript来动态显示当前日期。页面中包含一个按钮,点击后将更新显示区域的内容为当前的日期和时间。此示例适用于初学者了解JavaScript的基本用法。

效果
第一个JavaScript代码
代码

<!DOCTYPE html>
<html>
  <head>
    <title>show.html</title>

    <meta http-equiv="keywords" content="keyword1,keyword2,keyword3">
    <meta http-equiv="description" content="this is my page">
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">

    <!--<link rel="stylesheet" type="text/css" href="./styles.css">-->
    <script type="text/javascript">
        function displayDate(){
            document.getElementById("demo").innerHTML=Date();
        }
    </script>
  </head>

  <body>
    <center>
        <h1>JavaScript程序</h1>
        <p id="demo">这是一个段落</p>
        <button type="button" onclick="displayDate()">显示日期</button>
    </center>
  </body>
</html>

对于聪明人来说,劝告是多余的;对于愚昧人来说,劝告是不够的。
——莫里哀

【故障诊断】【pytorch】基于CNN-LSTM故障分类的轴承故障诊断研究[西储大学数据](Python代码实现)内容概要:本文介绍了基于CNN-LSTM神经网络模型的轴承故障分类方法,利用PyTorch框架实现,采用西储大学(Case Western Reserve University)公开的轴承故障数据集进行实验验证。该方法结合卷积神经网络(CNN)强大的特征提取能力和长短期记忆网络(LSTM)对时序数据的建模优势,实现对轴承不同故障类型和严重程度的高精度分类。文中详细阐述了数据预处理、模型构建、训练流程及结果分析过程,并提供了完整的Python代码实现,属于典型的工业设备故障诊断领域深度学习应用研究。; 适合人群:具备Python编程基础和深度学习基础知识的高校学生、科研人员及工业界从事设备状态监测与故障诊断的工程师,尤其适合正在开展相关课题研究或希望复现EI级别论文成果的研究者。; 使用场景及目标:① 学习如何使用PyTorch搭建CNN-LSTM混合模型进行时间序列分类;② 掌握轴承振动信号的预处理与特征学习方法;③ 复现并改进基于公开数据集的故障诊断模型,用于学术论文撰写或实际工业场景验证; 阅读建议:建议读者结合提供的代码逐行理解模型实现细节,重点关注数据加载、滑动窗口处理、网络结构设计及训练策略部分,鼓励在原有基础上尝试不同的网络结构或优化算法以提升分类性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值