C/C++指令#undef,#ifdef,#ifndef,#if的用法//
#undef
#undef 是在后面打消以前界说的宏界说该指令的形式为
#undef 标识符
此鱿脯标识符是一个宏名称。如不美观标识符当前没有被界说成一个宏名称,那么就会忽略该指令。
一旦界耸ё伽措置器标识符,它将连结已界说状况且在浸染域内,直到轨范竣事或者使用#undef 指令打消界说。
在此轨范中,我们将打消在先前途序中对预措置器的界说。
源代码:
#define TRACE(x)
#if DBG
#undef TRACE
#define TRACE(x) g_TraceCallback x
#else
#ifndef TRACE
#define TRACE(x)
#endif
#endif
解析:
#define TRACE(x)
#if DBG //成立的话跑这支
#undef TRACE //释放之前界说的 #define TRACE ,防止一再界说
#define TRACE(x) g_TraceCallback x
#else // DBG 不成立 跑这支
#ifndef TRACE //当TRACE 没有被界说
#define TRACE(x) //宏界说
#endif
#endif// DBG
#ifdef,#ifndef使用
前提编译呼吁最常见的形式为:
#ifdef 标识符
轨范段1
#else
轨范段2
#endif
它的浸染是:当标识符已经被界说过(一般是用#define呼吁界说),则对轨范段1进行编译,否则编译轨范段2。
其中#else部门也可以没有,即:
#ifdef
轨范段1
#denif
这里的“轨范段”可所以语句组,也可所以呼吁行。这种前提编译可以提高C源轨范的通用性。如不美观一个C源轨范在分歧计较机系统上系统上运行,而分歧的计较机缘有必然的差异。例如,当程式跑到else,如不美观TRACE没被界说,则下一句再界说
源代码:
#define TRACE(x)
#if DBG
#undef TRACE
#define TRACE(x) g_TraceCallback x
#else
#ifndef TRACE
#define TRACE(x)
#endif
#endif
解析:
#define TRACE(x)
#if DBG
#undef TRACE
#define TRACE(x) g_TraceCallback x
#else
#ifndef TRACE //如不美观之前没界说,则跑下界限说------该例前边有#define TRACE(x) ,则河干的界说自动失踪效是以不会因为一再界说而犯错
#define TRACE(x) //界说
#endif
#endif
我们有时也采用下面的形式:
#ifndef 标识符
轨范段1
#else
轨范段2
#endif
只是第一行与第一种形式分歧:将“ifdef”改为“ifndef”。它的浸染是:若标识符未被界耸ё衮编译轨范段1,否则编译轨范段2。这种形式与第一种形式的浸染相反。
以上两种形式用法差不多,按照需要任选一种,视便利而定。
还有一种形式,就是#if后面的是一个表达式,而不是一个简单的标识符:
#if 表达式
轨范段1
#else
轨范段2
#endif
当表达式成立,则跑轨范段1,否则跑轨范段2
注重:
除#undef释放之前的宏界说可零丁使用之外,
#ifdef,#if,#ifndef均要与#endif配对
如:
#if...#else...#endif
#ifdef...#endif
#ifndef...#endif
/指针的概念//
第一章。指针的概念
http://hi.baidu.com/hellosimple/blog/item/318fb7f61918ec63dcc47415.html
指针是一个特殊的变量,它里面存储的数值被解释成为内存里的一个地址。要搞清一个指针需要搞清指针的四方面的内容:指针的类型,指针
所指向的类型,指针的值或者叫指针所指向的内存区,还有指针本身所占据的内存区。让我们分别说明。
先声明几个指针放着做例子:
例一:
(1)int *ptr;
(2)char *ptr;
(3)int **ptr;
(4)int (*ptr)[3];
(5)int *(*ptr)[4];
如果看不懂后几个例子的话,请参阅我前段时间贴出的文章 < <如何理解c和c++的复杂类型声明>>。
1。 指针的类型。
从语法的角度看,你只要把指针声明语句里的指针名字去掉,剩下的部分就是这个指针的类型。这是指针本身所具有的类型。让我们看看例一
中各个指针的类型:
(1)int *ptr; //指针的类型是int *
(2)char *ptr; //指针的类型是char *
(3)int **ptr; //指针的类型是 int **
(4)int (*ptr)[3]; //指针的类型是 int(*)[3]
(5)int *(*ptr)[4]; //指针的类型是 int *(*)[4]
怎么样?找出指针的类型的方法是不是很简单?
2。指针所指向的类型。
当你通过指针来访问指针所指向的内存区时,指针所指向的类型决定了编译器将把那片内存区里的内容当做什么来看待。
从语法上看,你只须把指针声明语句中的指针名字和名字左边的指针声明符*去掉,剩下的就是指针所指向的类型。例如:
(1)int *ptr; //指针所指向的类型是int
(2)char *ptr; //指针所指向的的类型是char
(3)int **ptr; //指针所指向的的类型是 int *
(4)int (*ptr)[3]; //指针所指向的的类型是 int()[3]
(5)int *(*ptr)[4]; //指针所指向的的类型是 int *()[4]
在指针的算术运算中,指针所指向的类型有很大的作用。
指针的类型(即指针本身的类型)和指针所指向的类型是两个概念。当你对C越来越熟悉时,你会发现,把与指针搅和在一起的“类型”这个概念
分成“指针的类型”和“指针所指向的类型”两个概念,是精通指针的关键点之一。我看了不少书,发现有些写得差的书中,就把指针的这两
个概念搅在一起了,所以看起书来前后矛盾,越看越糊涂。
3。 指针的值,或者叫指针所指向的内存区或地址。
指针的值是指针本身存储的数值,这个值将被编译器当作一个地址,而不是一个一般的数值。在32位程序里,所有类型的指针的值都是一个32
位整数,因为32位程序里内存地址全都是32位长。
指针所指向的内存区就是从指针的值所代表的那个内存地址开始,长度为sizeof(指针所指向的类型)的一片内存区。以后,我们说一个指针的
值是XX,就相当于说该指针指向了以XX为首地址的一片内存区域;我们说一个指针指向了某块内存区域,就相当于说该指针的值是这块内存区
域的首地址。
指针所指向的内存区和指针所指向的类型是两个完全不同的概念。在例一中,指针所指向的类型已经有了,但由于指针还未初始化,所以它所
指向的内存区是不存在的,或者说是无意义的。
以后,每遇到一个指针,都应该问问:这个指针的类型是什么?指针指向的类型是什么?该指针指向了哪里?
4。 指针本身所占据的内存区。
指针本身占了多大的内存?你只要用函数sizeof(指针的类型)测一下就知道了。在32位平台里,指针本身占据了4个字节的长度。
指针本身占据的内存这个概念在判断一个指针表达式是否是左值时很有用。
第二章。指针的算术运算
指针可以加上或减去一个整数。指针的这种运算的意义和通常的数值的加减运算的意义是不一样的。例如:
例二:
1。 char a[20];
2。 int *ptr=a;
...
...
3。 ptr++;
在上例中,指针ptr的类型是int*,它指向的类型是int,它被初始化为指向整形变量a。接下来的第3句中,指针ptr被加了1,编译器是这样处理
的:它把指针ptr的值加上了sizeof(int),在32位程序中,是被加上了4。由于地址是用字节做单位的,故ptr所指向的地址由原来的变量a的地
址向高地址方向增加了4个字节。
由于char类型的长度是一个字节,所以,原来ptr是指向数组a的第0号单元开始的四个字节,此时指向了数组a中从第4号单元开始的四个字节。
我们可以用一个指针和一个循环来遍历一个数组,看例子:
例三:
int array[20];
int *ptr=array;
...
//此处略去为整型数组赋值的代码。
...
for(i=0;i <20;i++)
{
(*ptr)++;
ptr++;
}
这个例子将整型数组中各个单元的值加1。由于每次循环都将指针ptr加1,所以每次循环都能访问数组的下一个单元。再看例子:
例四:
1。 char a[20];
2。 int *ptr=a;
...
...
3。 ptr+=5;
在这个例子中,ptr被加上了5,编译器是这样处理的:将指针ptr的值加上5乘sizeof(int),在32位程序中就是加上了5乘4=20。由于地址的单
位是字节,故现在的ptr所指向的地址比起加5后的ptr所指向的地址来说,向高地址方向移动了20个字节。在这个例子中,没加5前的ptr指向数
组a的第0号单元开始的四个字节,加5后,ptr已经指向了数组a的合法范围之外了。虽然这种情况在应用上会出问题,但在语法上却是可以的。
这也体现出了指针的灵活性。
如果上例中,ptr是被减去5,那么处理过程大同小异,只不过ptr的值是被减去5乘sizeof(int),新的ptr指向的地址将比原来的ptr所指向的地
址向低地址方向移动了20个字节。
总结一下,一个指针ptrold加上一个整数n后,结果是一个新的指针ptrnew,ptrnew的类型和ptrold的类型相同,ptrnew所指向的类型和ptrold
所指向的类型也相同。ptrnew的值将比ptrold的值增加了n乘sizeof(ptrold所指向的类型)个字节。就是说,ptrnew所指向的内存区将比ptrold
所指向的内存区向高地址方向移动了n乘sizeof(ptrold所指向的类型)个字节。一个指针ptrold减去一个整数n后,结果是一个新的指针ptrnew
,ptrnew的类型和ptrold的类型相同,ptrnew所指向的类型和ptrold所指向的类型也相同。ptrnew的值将比ptrold的值减少了n乘sizeof
(ptrold所指向的类型)个字节,就是说,ptrnew所指向的内存区将比ptrold所指向的内存区向低地址方向移动了n乘sizeof(ptrold所指向的类
型)个字节。
第三章。运算符&和*
这里&是取地址运算符,*是...书上叫做“间接运算符”。&a的运算结果是一个指针,指针的类型是a的类型加个*,指针所指向的类型是a的类
型,指针所指向的地址嘛,那就是a的地址。*p的运算结果就五花八门了。总之*p的结果是p所指向的东西,这个东西有这些特点:它的类型是p
指向的类型,它所占用的地址是p所指向的地址。
例五:
int a=12;
int b;
int *p;
int **ptr;
p=&a;//&a的结果是一个指针,类型是int*,指向的类型是int,指向的地址是a的地址。
*p=24;//*p的结果,在这里它的类型是int,它所占用的地址是p所指向的地址,显然,*p就是变量a。
ptr=&p;//&p的结果是个指针,该指针的类型是p的类型加个*,在这里是int**。该指针所指向的类型是p的类型,这里是int*。该指针所指向的
地址就是指针p自己的地址。
*ptr=&b;//*ptr是个指针,&b的结果也是个指针,且这两个指针的类型和所指向的类型是一样的,所以?amp;b来给*ptr赋值就是毫无问题的了
。
**ptr=34;//*ptr的结果是ptr所指向的东西,在这里是一个指针,对这个指针再做一次*运算,结果就是一个int类型的变量。
第四章。指针表达式。
一个表达式的最后结果如果是一个指针,那么这个表达式就叫指针表达式。下面是一些指针表达式的例子:
例六:
int a,b;
int array[10];
int *pa;
pa=&a;//&a是一个指针表达式。
int **ptr=&pa;//&pa也是一个指针表达式。
*ptr=&b;//*ptr和&b都是指针表达式。
pa=array;
pa++;//这也是指针表达式。
例七:
char *arr[20];
char **parr=arr;//如果把arr看作指针的话,arr也是指针表达式
char *str;
str=*parr;//*parr是指针表达式
str=*(parr+1);//*(parr+1)是指针表达式
str=*(parr+2);//*(parr+2)是指针表达式
由于指针表达式的结果是一个指针,所以指针表达式也具有指针所具有的四个要素:指针的类型,指针所指向的类型,指针指向的内存区,指
针自身占据的内存。
好了,当一个指针表达式的结果指针已经明确地具有了指针自身占据的内存的话,这个指针表达式就是一个左值,否则就不是一个左值。 在例
七中,&a不是一个左值,因为它还没有占据明确的内存。*ptr是一个左值,因为*ptr这个指针已经占据了内存,其实*ptr就是指针pa,既然pa
已经在内存中有了自己的位置,那么*ptr当然也有了自己的位置。
第五章。数组和指针的关系
如果对声明数组的语句不太明白的话,请参阅我前段时间贴出的文章 < <如何理解c和c++的复杂类型声明>>。 数组的数组名其实可以看作一个
指针。看下例:
例八:
int array[10]={0,1,2,3,4,5,6,7,8,9},value;
...
...
value=array[0];//也可写成:value=*array;
value=array[3];//也可写成:value=*(array+3);
value=array[4];//也可写成:value=*(array+4);
上例中,一般而言数组名array代表数组本身,类型是int [10],但如果把array看做指针的话,它指向数组的第0个单元,类型是int *,所指
向的类型是数组单元的类型即int。因此*array等于0就一点也不奇怪了。同理,array+3是一个指向数组第3个单元的指针,所以*(array+3)等
于3。其它依此类推。
例九:
char *str[3]={
"Hello,this is a sample!",
"Hi,good morning.",
"Hello world"
};
char s[80];
strcpy(s,str[0]);//也可写成strcpy(s,*str);
strcpy(s,str[1]);//也可写成strcpy(s,*(str+1));
strcpy(s,str[2]);//也可写成strcpy(s,*(str+2));
上例中,str是一个三单元的数组,该数组的每个单元都是一个指针,这些指针各指向一个字符串。把指针数组名str当作一个指针的话,它指
向数组的第0号单元,它的类型是char**,它指向的类型是char *。
*str也是一个指针,它的类型是char*,它所指向的类型是char,它指向的地址是字符串"Hello,this is a sample!"的第一个字符的地址,
即'H'的地址。 str+1也是一个指针,它指向数组的第1号单元,它的类型是char**,它指向的类型是char *。
*(str+1)也是一个指针,它的类型是char*,它所指向的类型是char,它指向"Hi,good morning."的第一个字符'H',等等。
下面总结一下数组的数组名的问题。声明了一个数组TYPE array[n],则数组名称array就有了两重含义:第一,它代表整个数组,它的类型是
TYPE [n];第二,它是一个指针,该指针的类型是TYPE*,该指针指向的类型是TYPE,也就是数组单元的类型,该指针指向的内存区就是数组第
0号单元,该指针自己占有单独的内存区,注意它和数组第0号单元占据的内存区是不同的。该指针的值是不能修改的,即类似array++的表达式
是错误的。
在不同的表达式中数组名array可以扮演不同的角色。
在表达式sizeof(array)中,数组名array代表数组本身,故这时sizeof函数测出的是整个数组的大小。
在表达式*array中,array扮演的是指针,因此这个表达式的结果就是数组第0号单元的值。sizeof(*array)测出的是数组单元的大小。
表达式array+n(其中n=0,1,2,....。)中,array扮演的是指针,故array+n的结果是一个指针,它的类型是TYPE*,它指向的类型是TYPE,
它指向数组第n号单元。故sizeof(array+n)测出的是指针类型的大小。
例十:
int array[10];
int (*ptr)[10];
ptr=&array;
上例中ptr是一个指针,它的类型是int (*)[10],他指向的类型是int [10],我们用整个数组的首地址来初始化它。在语句ptr=&array中,
array代表数组本身。
本节中提到了函数sizeof(),那么我来问一问,sizeof(指针名称)测出的究竟是指针自身类型的大小呢还是指针所指向的类型的大小?答案是
前者。例如:
int (*ptr)[10];
则在32位程序中,有:
sizeof(int(*)[10])==4
sizeof(int [10])==40
sizeof(ptr)==4
实际上,sizeof(对象)测出的都是对象自身的类型的大小,而不是别的什么类型的大小。
第六章。指针和结构类型的关系
可以声明一个指向结构类型对象的指针。
例十一:
struct MyStruct
{
int a;
int b;
int c;
}
MyStruct ss={20,30,40};//声明了结构对象ss,并把ss的三个成员初始化为20,30和40。
MyStruct *ptr=&ss;//声明了一个指向结构对象ss的指针。它的类型是
MyStruct*,它指向的类型是MyStruct。
int *pstr=(int*)&ss;//声明了一个指向结构对象ss的指针。但是它的类型和它指向的类型和ptr是不同的。
请问怎样通过指针ptr来访问ss的三个成员变量?
答案:
ptr->a;
ptr->b;
ptr->c;
又请问怎样通过指针pstr来访问ss的三个成员变量?
答案:
*pstr;//访问了ss的成员a。
*(pstr+1);//访问了ss的成员b。
*(pstr+2)//访问了ss的成员c。
呵呵,虽然我在我的MSVC++6.0上调式过上述代码,但是要知道,这样使用pstr来访问结构成员是不正规的,为了说明为什么不正规,让我们看
看怎样通过指针来访问数组的各个单元:
例十二:
int array[3]={35,56,37};
int *pa=array;
通过指针pa访问数组array的三个单元的方法是:
*pa;//访问了第0号单元
*(pa+1);//访问了第1号单元
*(pa+2);//访问了第2号单元
从格式上看倒是与通过指针访问结构成员的不正规方法的格式一样。
所有的C/C++编译器在排列数组的单元时,总是把各个数组单元存放在连续的存储区里,单元和单元之间没有空隙。但在存放结构对象的各个成
员时,在某种编译环境下,可能会需要字对齐或双字对齐或者是别的什么对齐,需要在相邻两个成员之间加若干个“填充字节”,这就导致各
个成员之间可能会有若干个字节的空隙。
所以,在例十二中,即使*pstr访问到了结构对象ss的第一个成员变量a,也不能保证*(pstr+1)就一定能访问到结构成员b。因为成员a和成员b
之间可能会有若干填充字节,说不定*(pstr+1)就正好访问到了这些填充字节呢。这也证明了指针的灵活性。要是你的目的就是想看看各个结构
成员之间到底有没有填充字节,嘿,这倒是个不错的方法。
通过指针访问结构成员的正确方法应该是象例十二中使用指针ptr的方法。
第七章。指针和函数的关系
可以把一个指针声明成为一个指向函数的指针。
int fun1(char*,int);
int (*pfun1)(char*,int);
pfun1=fun1;
....
....
int a=(*pfun1)("abcdefg",7);//通过函数指针调用函数。
可以把指针作为函数的形参。在函数调用语句中,可以用指针表达式来作为实参。
例十三:
int fun(char*);
int a;
char str[]="abcdefghijklmn";
a=fun(str);
...
...
int fun(char*s)
{
int num=0;
for(int i=0;i <strlen(s);i++)
{
num+=*s;s++;
}
return num;
}
这个例子中的函数fun统计一个字符串中各个字符的ASCII码值之和。前面说了,数组的名字也是一个指针。在函数调用中,当把str作为实参传
递给形参s后,实际是把str的值传递给了s,s所指向的地址就和str所指向的地址一致,但是str和s各自占用各自的存储空间。在函数体内对s
进行自加1运算,并不意味着同时对str进行了自加1运算。
第八章。指针类型转换
当我们初始化一个指针或给一个指针赋值时,赋值号的左边是一个指针,赋值号的右边是一个指针表达式。在我们前面所举的例子中,绝大多
数情况下,指针的类型和指针表达式的类型是一样的,指针所指向的类型和指针表达式所指向的类型是一样的。
例十四:
1。 float f=12.3;
2。 float *fptr=&f;
3。 int *p;
在上面的例子中,假如我们想让指针p指向实数f,应该怎么搞?是用下面的语句吗?
p=&f;
不对。因为指针p的类型是int*,它指向的类型是int。表达式&f的结果是一个指针,指针的类型是float*,它指向的类型是float。两者不一致
,直接赋值的方法是不行的。至少在我的MSVC++6.0上,对指针的赋值语句要求赋值号两边的类型一致,所指向的类型也一致,其它的编译器上
我没试过,大家可以试试。为了实现我们的目的,需要进行“强制类型转换”:
p=(int*)&f;
如果有一个指针p,我们需要把它的类型和所指向的类型改为TYEP*和TYPE,那么语法格式是:
(TYPE*)p;
这样强制类型转换的结果是一个新指针,该新指针的类型是TYPE*,它指向的类型是TYPE,它指向的地址就是原指针指向的地址。而原来的指针
p的一切属性都没有被修改。
一个函数如果使用了指针作为形参,那么在函数调用语句的实参和形参的结合过程中,也会发生指针类型的转换。
例十五:
void fun(char*);
int a=125,b;
fun((char*)&a);
...
...
void fun(char*s)
{
char c;
c=*(s+3);*(s+3)=*(s+0);*(s+0)=c;
c=*(s+2);*(s+2)=*(s+1);*(s+1)=c;
}
注意这是一个32位程序,故int类型占了四个字节,char类型占一个字节。函数fun的作用是把一个整数的四个字节的顺序来个颠倒。注意到了
吗?在函数调用语句中,实?amp;a的结果是一个指针,它的类型是int *,它指向的类型是int。形参这个指针的类型是char*,它指向的类型是
char。这样,在实参和形参的结合过程中,我们必须进行一次从int*类型到char*类型的转换。结合这个例子,我们可以这样来想象编译器进行
转换的过程:编译器先构造一个临时指针 char*temp,然后执行temp=(char*)&a,最后再把temp的值传递给s。所以最后的结果是:s的类型是
char*,它指向的类型是char,它指向的地址就是a的首地址。
我们已经知道,指针的值就是指针指向的地址,在32位程序中,指针的值其实是一个32位整数。那可不可以把一个整数当作指针的值直接赋给
指针呢?就象下面的语句:
unsigned int a;
TYPE *ptr;//TYPE是int,char或结构类型等等类型。
...
...
a=20345686;
ptr=20345686;//我们的目的是要使指针ptr指向地址20345686(十进制)
ptr=a;//我们的目的是要使指针ptr指向地址20345686(十进制)
编译一下吧。结果发现后面两条语句全是错的。那么我们的目的就不能达到了吗?不,还有办法:
unsigned int a;
TYPE *ptr;//TYPE是int,char或结构类型等等类型。
...
...
a=某个数,这个数必须代表一个合法的地址;
ptr=(TYPE*)a;//呵呵,这就可以了。
严格说来这里的(TYPE*)和指针类型转换中的(TYPE*)还不一样。这里的(TYPE*)的意思是把无符号整数a的值当作一个地址来看待。
上面强调了a的值必须代表一个合法的地址,否则的话,在你使用ptr的时候,就会出现非法操作错误。
想想能不能反过来,把指针指向的地址即指针的值当作一个整数取出来。完全可以。下面的例子演示了把一个指针的值当作一个整数取出来,
然后再把这个整数当作一个地址赋给一个指针:
例十六:
int a=123,b;
int *ptr=&a;
char *str;
b=(int)ptr;//把指针ptr的值当作一个整数取出来。
str=(char*)b;//把这个整数的值当作一个地址赋给指针str。
好了,现在我们已经知道了,可以把指针的值当作一个整数取出来,也可以把一个整数值当作地址赋给一个指针。
第九章。指针的安全问题
看下面的例子:
例十七:
char s='a';
int *ptr;
ptr=(int*)&s;
*ptr=1298;
指针ptr是一个int*类型的指针,它指向的类型是int。它指向的地址就是s的首地址。在32位程序中,s占一个字节,int类型占四个字节。最后
一条语句不但改变了s所占的一个字节,还把和s相临的高地址方向的三个字节也改变了。这三个字节是干什么的?只有编译程序知道,而写程
序的人是不太可能知道的。也许这三个字节里存储了非常重要的数据,也许这三个字节里正好是程序的一条代码,而由于你对指针的马虎应用
,这三个字节的值被改变了!这会造成崩溃性的错误。让我们再来看一例:
例十八:
1。 char a;
2。 int *ptr=&a;
...
...
3。 ptr++;
4。 *ptr=115;
该例子完全可以通过编译,并能执行。但是看到没有?第3句对指针ptr进行自加1运算后,ptr指向了和整形变量a相邻的高地址方向的一块存储
区。这块存储区里是什么?我们不知道。有可能它是一个非常重要的数据,甚至可能是一条代码。而第4句竟然往这片存储区里写入一个数据!
这是严重的错误。所以在使用指针时,程序员心里必须非常清楚:我的指针究竟指向了哪里。
在用指针访问数组的时候,也要注意不要超出数组的低端和高端界限,否则也会造成类似的错误。
在指针的强制类型转换:ptr1=(TYPE*)ptr2中,如果sizeof(ptr2的类型)大于sizeof(ptr1的类型),那么在使用指针ptr1来访问ptr2所指向的
存储区时是安全的。如果sizeof(ptr2的类型)小于sizeof(ptr1的类型),那么在使用指针ptr1来访问ptr2所指向的存储区时是不安全的。至于
为什么,读者结合例十七来想一想,应该会明白的。
请写出以下程序的运行结果:
#include <stdio.h>
int *p;
pp(int a,int *b);
main()
{
int a=1,b=2,c=3;
p=&b;
pp(a+c,&b);
printf("(1)%d%d%dn",a,b,*p);
}
pp(int a,int *b)
{int c=4;
*p=*b+c;
a=*p-c;
printf("(2)%d%d%dn",a,*b,*p);
}
[转]这篇文章摘自网易广州社区的C语言版精华区。文章不错,不敢独享!作者girlrong是以前C语言版版主,她乐于助人,虚心诚恳,颇受网友欢迎。只可惜现在已退隐江湖了
//在C语言中,static
作用1,模塊內使用 作用二:記憶效能 作用三:初始化為0 作用四:類內定義
转自(from http://www.cnblogs.com/dc10101/archive/2007/08/22/865556.html),比较有意思 在C语言中,static的字面意思很容易把我们导入歧途,其实它的作用有三条。 (1)先来介绍它的第一条也是最重要的一条:隐藏。 当我们同时编译多个文件时,所有未加static前缀的全局变量和函数都具有全局可见性。为理解这句话,我举例来说明。我们要同时编译两个源文件,一个是a.c,另一个是main.c。 下面是a.c的内容 char a = 'A'; // global variable void msg() { } 下面是main.c的内容 int main(void) { } 程序的运行结果是: A Hello 你可能会问:为什么在a.c中定义的全局变量a和函数msg能在main.c中使用?前面说过,所有未加static前缀的全局变量和函数都具有全局可见性,其它的源文件也能访问。此例中,a是全局变量,msg是函数,并且都没有加static前缀,因此对于另外的源文件main.c是可见的。 如果加了static,就会对其它源文件隐藏。例如在a和msg的定义前加上static,main.c就看不到它们了。利用这一特性可以在不同的文件中定义同名函数和同名变量,而不必担心命名冲突。Static可以用作函数和变量的前缀,对于函数来讲,static的作用仅限于隐藏,而对于变量,static还有下面两个作用。(2)static的第二个作用是保持变量内容的持久。存储在静态数据区的变量会在程序刚开始运行时就完成初始化,也是唯一的一次初始化。共有两种变量存储在静态存储区:全局变量和static变量,只不过和全局变量比起来,static可以控制变量的可见范围,说到底static还是用来隐藏的。虽然这种用法不常见,但我还是举一个例子。 #include <stdio.h> int fun(void){ } int count = 1; int main(void) { } 程序的运行结果是: global 1 2 3 4 5 6 7 8 9 10 (3)static的第三个作用是默认初始化为0。其实全局变量也具备这一属性,因为全局变量也存储在静态数据区。在静态数据区,内存中所有的字节默认值都是0x00,某些时候这一特点可以减少程序员的工作量。比如初始化一个稀疏矩阵,我们可以一个一个地把所有元素都置0,然后把不是0的几个元素赋值。如果定义成静态的,就省去了一开始置0的操作。再比如要把一个字符数组当字符串来用,但又觉得每次在字符数组末尾加’\0’太麻烦。如果把字符串定义成静态的,就省去了这个麻烦,因为那里本来就是’\0’。不妨做个小实验验证一下。 #include <stdio.h> int a; int main(void) { } 程序的运行结果如下 integer: 0; string: (begin)(end) 最后对static的三条作用做一句话总结。首先static的最主要功能是隐藏,其次因为static变量存放在静态存储区,所以它具备持久性和默认值0。 另外: 一、c程序存储空间布局 我认为你改了之后是可以的.. 假设一个函数内定义个静态变量,并在它定义时就给了初值,如: void fun (void) { static s_cnt = 1; ...// 其他代码 } 那么是在编译的时候赋值给这个静态变量,以后每次调用都不会再让他等于1,而是继续上一次的值 但如果在定义时没有给初值(默认是0),但在下一句赋值,如: void fun (void) { static s_cnt; s_cnt = 1; ... //其他代码 } 这样每次进来都是s_cnt都是1.. |
//const//static///
兩種方法:
第一:使用extern關鍵字聲明(不推薦,破壞了封裝性)
第二:新建一個類,存放全局的變量,函數
第一:使用extern關鍵字聲明(不推薦,破壞了封裝性)
在一个头文件中声明int var_name全局变量,在另一个cpp文件中引用此变量: extern int var_name;
指出var_name是在外部文件定时的变量,编译器会自动在所有文件中查找var_name的定义,如:
aaa.h:
#ifndef AAA_H
#define AAA_H
int var_name;
static bool fun()
{
dosth
}
#endif // AAA_H
main.cpp:
#include <QtCore/QCoreApplication>
#include "aaa.h"
#include <qdebug.h>
extern int var_name;//只需导入即可,不可再定义,函數可用也可不用extren聲明
int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
if (!dun())
return 1;
qDebug()<<var_name;//全局整形变量会赋默认值0
return a.exec();
}
第二:新建一個類,存放全局的變量,函數(static关键字)
在.h文件下定义类
class temp{
private:
static int x;
}
在.cpp下定义
int temp::x=0;
这样就可以当全局变量使用了,
以下为转来的实例
http://blog.youkuaiyun.com/xiehuin/article/details/2087235
这一段开发一个程序,需要多个源文件,包括若干个头文件和若干个定义文件。因此如何在多个源程序间开发传递变量就成了一个关键问题。一般来说在多个源程序间传递变量大概有两种方法,一是利用extern声明全局变量来进行传递,二是将全局变量定义成一个类的静态变量,通过类名::变量名进行调用。
通过若干次调试,第一种方法终于成功,现将注意要点记录如下:
WILD.H文件:
#ifndef FORM1_H
#define FORM1_H
/*class wild
{
public:
static int sum; //推荐
};*/
extern int num; //不推荐
#endif
WILD.CPP文件:
#include "wild.h"
//wild::sum=10; //推荐
int num=10; //不推荐
FORM1.H文件:
/****************************************************************************
** Form interface generated from reading ui file 'form1.ui'
**
** Created: 六 2月 9 11:13:23 2008
** by: The User Interface Compiler ($Id: qt/main.cpp 3.1.1 edited Nov 21 17:40 $)
**
** WARNING! All changes made in this file will be lost!
****************************************************************************/
#ifndef FORM1_H
#define FORM1_H
#include <qvariant.h>
#include <qwidget.h>
//#include "wild.h"
class QVBoxLayout;
class QHBoxLayout;
class QGridLayout;
class QLineEdit;
class QPushButton;
//class wild;
class Form1 : public QWidget
{
Q_OBJECT
public:
Form1( QWidget* parent = 0, const char* name = 0, WFlags fl = 0 );
~Form1();
QLineEdit* lineEdit1;
QPushButton* pushButton1;
protected:
protected slots:
virtual void languageChange();
virtual void sett();
};
#endif // FORM1_H
FORM1.CPP文件:
/****************************************************************************
** Form implementation generated from reading ui file 'form1.ui'
**
** Created: 六 2月 9 11:13:35 2008
** by: The User Interface Compiler ($Id: qt/main.cpp 3.1.1 edited Nov 21 17:40 $)
**
** WARNING! All changes made in this file will be lost!
****************************************************************************/
#include "form1.h"
//#include "wild.h"
#include <qvariant.h>
#include <qlineedit.h>
#include <qpushbutton.h>
#include <qlayout.h>
#include <qtooltip.h>
#include <qwhatsthis.h>
#include <qimage.h>
#include <qpixmap.h>
#include <iostream.h>
extern int num; //不推荐
/*
* Constructs a Form1 as a child of 'parent', with the
* name 'name' and widget flags set to 'f'.
*/
Form1::Form1( QWidget* parent, const char* name, WFlags fl )
: QWidget( parent, name, fl )
{
if ( !name )
setName( "Form1" );
lineEdit1 = new QLineEdit( this, "lineEdit1" );
lineEdit1->setGeometry( QRect( 50, 80, 191, 61 ) );
pushButton1 = new QPushButton( this, "pushButton1" );
pushButton1->setGeometry( QRect( 60, 190, 161, 71 ) );
languageChange();
resize( QSize(600, 480).expandedTo(minimumSizeHint()) );
// signals and slots connections
connect( pushButton1, SIGNAL( clicked() ), this, SLOT( sett() ) );
connect( pushButton1, SIGNAL( clicked() ), this, SLOT( adjustSize() ) );
}
/*
* Destroys the object and frees any allocated resources
*/
Form1::~Form1()
{
// no need to delete child widgets, Qt does it all for us
}
/*
* Sets the strings of the subwidgets using the current
* language.
*/
void Form1::languageChange()
{
setCaption( tr( "Form1" ) );
pushButton1->setText( tr( "pushButton1" ) );
}
void Form1::sett()
{
//lineEdit1->setText(wild::sum);
cout <<num;
}
MAIN文件:
#include <qapplication.h>
#include "form1.h"
int main( int argc, char ** argv )
{
QApplication a( argc, argv );
Form1 w;
w.show();
a.connect( &a, SIGNAL( lastWindowClosed() ), &a, SLOT( quit() ) );
return a.exec();
}
要注意以下几点:
(1)头文件中声明全局变量时要加上extern关键字,全局变量的定义可以直接加在头文件中,也可以放到定义文件中,但在定义文件中的时候要注意加上变量类型符。
(2)调用全局变量的源文件可以不用包含全局变量所在的头文件,但最好是加上,因为几个文件间的相互包含makefile都给解决了。
(3)使用全局变量的时候需先声明,如extern int num;将其放在本文件的头文件的前面。(不推荐)
以上就是使用extern来解决全局变量的问题,但是这种方法有弊端,主要是如果在系统库函数中有和定义的全局变量同名的变量,将会造成冲突,其二是其结构不符合面向对象的思想,因此还是使用第二种方法为好。
實例2
//globalsize.h
#ifndef GLOBALSIZE_H
#define GLOBALSIZE_H
#include <QtGui>
class GlobalSize
{
public:
static QSize size;
static void setSize(QSize s);
static QSize getSize();
};
#endif // GLOBALSIZE_H
//globalsize.cpp
#include "globalsize.h"
QSize GlobalSize::size = QSize(0,0);
void GlobalSize::setSize(QSize s)
{
size = s;
}
QSize GlobalSize::getSize()
{
return size;
}
辅助知识
面向对象的static关键字(类中的static关键字)
静态数据成员有以下特点:
对于非静态数据成员,每个类对象都有自己的拷贝。而静态数据成员被当作是类的成员。无论这个类的对象被定义了多少个,静态数据成员在程序中也只有一份 拷 贝,由该类型的所有对象共享访问。也就是说,静态数据成员是该类的所有对象所共有的。对该类的多个对象来说,静态数据成员只分配一次内存,供所有对象共 用。所以,静态数据成员的值对每个对象都是一样的,它的值可以更新;
静态数据成员存储在全局数据区。静态数据成员定义时要分配空间,所以不能在类声明中定义。语句int Myclass::Sum=0;是定义静态数据成员;
静态数据成员和普通数据成员一样遵从public,protected,private访问规则;
因为静态数据成员在全局数据区分配内存,属于本类的所有对象共享,所以,它不属于特定的类对象,在没有产生类对象时其作用域就可见,即在没有产生类的实例时,我们就可以操作它;
静态数据成员初始化与一般数据成员初始化不同。静态数据成员初始化的格式为:
<数据类型><类名>::<静态数据成员名>=<值>
类的静态数据成员有两种访问形式:
<类对象名>.<静态数据成员名> 或 <类类型名>::<静态数据成员名>
如果静态数据成员的访问权限允许的话(即public的成员),可在程序中,按上述格式来引用静态数据成员 ;
静态数据成员主要用在各个对象都有相同的某项属性的时候。比如对于一个存款类,每个实例的利息都是相同的。所以,应该把利息设为存款类的静态数据成 员。这 有两个好处,第一,不管定义多少个存款类对象,利息数据成员都共享分配在全局数据区的内存,所以节省存储空间。第二,一旦利息需要改变时,只要改变一次, 则所有存款类对象的利息全改变过来了;
同全局变量相比,使用静态数据成员有两个优势:
静态数据成员没有进入程序的全局名字空间,因此不存在与程序中其它全局名字冲突的可能性;
可以实现信息隐藏。静态数据成员可以是private成员,而全局变量不能;
2、静态成员函数
与静态数据成员一样,我们也可以创建一个静态成员函数,它为类的全部服务而不是为某一个类的具体对象服务。静态成员函数与静态数据成员一样,都是类的 内部 实现,属于类定义的一部分。 普通的成员函数一般都隐含了一个this指针,this指针指向类的对象本身,因为普通成员函数总是具体的属于某个类的具体对象的。通常情况下,this 是缺省的。如函数fn()实际上是this->fn()。但是与普通函数相比,静态成员函数由于不是与任何的对象相联系,因此它不具有this指 针。从这个意义上讲,它无法访问属于类对象的非静态数据成员,也无法访问非静态成员函数,它只能调用其余的静态成员函数。
关于静态成员函数,可以总结为以下几点:
出现在类体外的函数定义不能指定关键字static;
静态成员之间可以相互访问,包括静态成员函数访问静态数据成员和访问静态成员函数;
非静态成员函数可以任意地访问静态成员函数和静态数据成员;
静态成员函数不能访问非静态成员函数和非静态数据成员;
由于没有this指针的额外开销,因此静态成员函数与类的全局函数相比速度上会有少许的增长;
调用静态成员函数,可以用成员访问操作符(.)和(->)为一个类的对象或指向类对象的指针调用静态成员函数,也可以直接使用如下格式:
<类名>::<静态成员函数名>(<参数表>)
调用类的静态成员函数。
//
auto, static, register, const, volatile
1、逗号表达式的求解过程:先求表达式1的值,再求表达式2的值,整个表达式的值是表达式2的值;
1. 局部变量:
2. 全局变量:
(3)static
常见的两种用途:
1>统计函数被调用的次数;
2>减少局部数组建立和赋值的开销.变量的建立和赋值是需要一定的处理器开销的,特别是数组等含有较多元素的存储类型。在一些含有较多的变量并且被经常调用的函数中,可以将一些数组声明为static类型,以减少建立或者初始化这些变量的开销.
详细说明:
1>、变量会被放在程序的全局存储区中,这样可以在下一次调用的时候还可以保持原来的赋值。这一点是它与堆栈变量和堆变量的区别。
2>、变量用static告知编译器,自己仅仅在变量的作用范围内可见。这一点是它与全局变量的区别。
3>当static用来修饰全局变量时,它就改变了全局变量的作用域,使其不能被别的程序extern,限制在了当前文件里,但是没有改变其存放位置,还是在全局静态储存区。
使用注意:
1>若全局变量仅在单个C文件中访问,则可以将这个变量修改为静态全局变量,以降低模块间的耦合度;
2>若全局变量仅由单个函数访问,则可以将这个变量改为该函数的静态局部变量,以降低模块间的耦合度;
3>设计和使用访问动态全局变量、静态全局变量、静态局部变量的函数时,需要考虑重入问题(只要输入数据相同就应产生相同的输出)。
(4)const
被const修饰的东西都受到强制保护,可以预防意外的变动,能提高程序的健壮性。它可以修饰函数的参数、返回值,甚至函数的定义体。
作用:
1>修饰输入参数
a.对于非内部数据类型的输入参数,应该将“值传递”的方式改为“const引用传递”,目的是提高效率。例如将void Func(A a) 改为void Func(const A &a)。
b.对于内部数据类型的输入参数,不要将“值传递”的方式改为“const引用传递”。否则既达不到提高效率的目的,又降低了函数的可理解性。例如void Func(int x) 不应该改为void Func(const int &x)。
2>用const修饰函数的返回值
a.如果给以“指针传递”方式的函数返回值加const修饰,那么函数返回值(即指针)的内容不能被修改,该返回值只能被赋给加const修饰的同类型指针。
如对于: const char * GetString(void);
如下语句将出现编译错误:
char *str = GetString();//cannot convert from 'const char *' to 'char *';
正确的用法是:
const char *str = GetString();
b.如果函数返回值采用“值传递方式”,由于函数会把返回值复制到外部临时的存储单元中,加const修饰没有任何价值。如不要把函数int GetInt(void) 写成const int GetInt(void)。
3>const成员函数的声明中,const关键字只能放在函数声明的尾部,表示该类成员不修改对象.
说明:
const type m; //修饰m为不可改变
示例:
typedef char * pStr; //新的类型pStr;
char string[4] = "abc";
const char *p1 = string;
p1++; //正确,上边修饰的是*p1,p1可变
const pStr p2 = string;
p2++; //错误,上边修饰的是p2,p2不可变,*p2可变
同理,const修饰指针时用此原则判断就不会混淆了。
const int *value; //*value不可变,value可变
int* const value; //value不可变,*value可变
const (int *) value; //(int *)是一种type,value不可变,*value可变
//逻辑上这样理解,编译不能通过,需要tydef int* NewType;
const int* const value;//*value,value都不可变
(5)volatile
表明某个变量的值可能在外部被改变,优化器在用到这个变量时必须每次都小心地重新读取这个变量的值,而不是使用保存在寄存器里的备份。它可以适用于基础类型如:int,char,long......也适用于C的结构和C++的类。当对结构或者类对象使用volatile修饰的时候,结构或者类的所有成员都会被视为volatile.
该关键字在多线程环境下经常使用,因为在编写多线程的程序时,同一个变量可能被多个线程修改,而程序通过该变量同步各个线程。
简单示例:
DWORD __stdcall threadFunc(LPVOID signal)
{
int* intSignal=reinterpret_cast(signal);
*intSignal=2;
while(*intSignal!=1)
sleep(1000);
return 0;
}
该线程启动时将intSignal 置为2,然后循环等待直到intSignal 为1 时退出。显然intSignal的值必须在外部被改变,否则该线程不会退出。但是实际运行的时候该线程却不会退出,即使在外部将它的值改为1,看一下对应的伪汇编代码就明白了:
mov ax,signal
label:
if(ax!=1)
goto label
对于C编译器来说,它并不知道这个值会被其他线程修改。自然就把它cache在寄存器里面。C 编译器是没有线程概念的,这时候就需要用到volatile。volatile 的本意是指:这个值可能会在当前线程外部被改变。也就是说,我们要在threadFunc中的intSignal前面加上volatile关键字,这时候,编译器知道该变量的值会在外部改变,因此每次访问该变量时会重新读取,所作的循环变为如下面伪码所示:
label:
mov ax,signal
if(ax!=1)
goto label
注意:一个参数既可以是const同时是volatile,是volatile因为它可能被意想不到地改变。它是const因为程序不应该试图去修改它。
(6)extern
extern 意为“外来的”···它的作用在于告诉编译器:有这个变量,它可能不存在当前的文件中,但它肯定要存在于工程中的某一个源文件中或者一个Dll的输出中。
下面关于C++的几个关键字是经常和我们打交道的而我们又经常对这些含糊不清的,本文根据自己的学习体会作以总结,以期达到真正理解和活用的目的。
static
l
l
l
int max_so_far( int curr )//求至今(本次调用)为止最大值
{
}
l
l类的静态成员变量必须在声明它的文件范围内进行初始化才能使用,private类型的也不例外。如,
float SavingsAccount::currentRate = 0.00154;
(注:currentRate是类SavingsAccount的静态成员变量)
register
l
auto
l
extern
l
l
u
u
volatile
l
int volatile nVint;
const
l
l
const int maxarray = 255;
char store_char[maxarray];
l
char *const aptr = mybuf;// 常量指针
*aptr = 'a';// Legal
aptr = yourbuf;// Error
const char *bptr = mybuf;// (指针bptr)指向常量数据
*bptr = 'a';// Error
bptr = yourbuf;// Legal
lconst修饰成员函数时不能用于构造和析构函数。
const & static
static 类型 函数名()
这里的static修饰函数,说明这个函数只具有内部链接属性(只能被本文件内的其它函数调用,不能被其它文件中的函数调用)
const 类型 函数名()
这里的const修饰函数的返回类型,说明返回值不可修改。const:只读static:独立分配存储区,记忆功能默认分类|
//
c语言模块化
在C语言的应用领域,如通讯领域和嵌入式系统领域,一个的软件项目通常包含很多复杂的功能,实现这个项目不是一个程序员单枪匹马可以胜任的,往往需要一个团队的有效合作,另外,在一个以C代码为主的完整的项目中,经常也需要加入一些其他语言的代码,例如,C代码和汇编代码的混合使用,C文件和C++的同时使用。这些都增加了一个软件项目的复杂程度,为了提高软件质量,合理组织的各种代码和文件是非常重要的。
组织代码和文件的目的是为了使团队合作更加有效,使软件项目有良好的可扩展性、可维护性、可移植性、可裁减、可测试性,防止错误发生,提高软件的稳定性。通常情况下,软件项目采用层次化结构和模块化开发的方法,例如,一个嵌入式软件项目可能有驱动层,操作系统层,功能层,应用程序层,每一个层使用它的下层提供的接口,并为它的上层提供调用接口,模块则是每一个层中完成一个功能的单元,例如驱动层的每一个设备的驱动就是一个模块,应用层的每个应用程序就是一个模块,模块使用下层提供的接口和同层其他模块提供的接口,完成特定功能,为上层和同层的其他模块提供调用接口。
这里的接口是指一个功能模块暴露出来的,提供给其他模块的访问具体功能的方法。根据C语言的特点,使用*.c文件实现模块的功能,使用*.h文件暴露单元的接口,在*.h文件里声明外部其他模块可能是用的函数,数据类型,全局变量,类型定义,宏定义和常量定义.外部模块只需包含*.h文件就可以使用相应的功能.当然,模块可以在细化为子模块.虽然我们这里说的接口和COM(通用组件模型)里定义的接口不同,但是,根据COM里对接口的讨论,为了使软件在修改时,一个模块的修改不会影响到其他模块的一个模块的修改不会导致其他模块也需要修改,所以,接口第一次发布后,修改*.h文件不能导致使用这个接口的其他模块需要重新编写.
根据C语言的特点,并借鉴一些成熟软件项目代码,总结C项目中代码文件组织的基本建议:
1,使用层次化和模块化的软件开发模型.每一个模块只能使用所在层和下一层模块提供的接口.
2,每个模块的文件包存在独立的一个文件夹中.通常情况下,实现一个模块的文件不止一个,这些相关的文件应该保存在一个文件夹中.
3,用于模块裁减的条件编译宏保存在一个独立的文件里,便于软件裁减.
4,硬件相关代码和操作系统相关代码与纯C代码相对独立保存,以便于软件移植.
5,声明和定义分开,使用*.h文件暴露模块需要提供给外部的函数,宏,类型,常量,全局变量,尽量做到模块对外部透明,用户在使用模块功能时不需要了解具体的实现,文件一旦发布,要修改一定要很慎重,
6,文件夹和文件命名要能够反映出模块的功能.
7,正式版本和测试版本使用统一文件,使用宏控制是否产生测试输出。
8,必要的注释不可缺少。
理想的情况下,一个可执行的模块提供一个公开的接口,即使用一个*.h文件暴露接口,但是,有时候,一个模块需要提供不止一个接口,这时,就要为每个定义的接口提供一个公开的接口。在C语言的里,每个C文件是一个模块,头文件为使用这个模块的用户提供接口,用户只要包含相应的头文件就可以使用在这个头文件中暴露的接口。所有的头文件都建议参考以下的规则:
1, 头文件中不能有可执行代码,也不能有数据的定义,只能有宏、类型(typedef,struct,union,menu),数据和函数的声明。例如以下的代码可以包含在头文件里:
#define NAMESTRING “name”
typedef unsign long word;
menu{
flag1;
flag2;
};
typedef struct{
int x;
int y;
} Piont;
extent Fun(void);
extent int a;
全局变量和函数的定义不能出现在*.h文件里。例如下面的代码不能包含在头文件:
int a;
void Fun1(void)
{
a++;
}
2,头文件中不能包本地数据(模块自己使用的数据或函数,不被其他模块使用)。这一点相当于面向对象程序设计里的私有成员,即只有模块自己使用的函数,数据,不要用extent在头文件里声明,只有模块自己使用的宏,常量,类型也不要在头文件里声明,应该在自己的*.c文件里声明。
3,含一些需要使用的声明。在头文件里声明外部需要使用的数据,函数,宏,类型。
4,防止被重复包含。使用下面的宏防止一个头文件被重复包含。
#ifndef MY_INCLUDE_H
#define MY_INCLUDE_H
<头文件内容 >
#endif
5,包含extern "C",使的程序可以在C++编译器被编译
#ifdef __cplusplus
extern "C"{
#endif
<函数声明 >
#ifdef __cplusplus
}
#enfif
被extern "C"修饰的变量和函数是按照C语言方式编译和连接的;未加extern “C”声明时的编译方式,作为一种面向对象的语言,C++支持函数重载,而过程式语言C则不支持。函数被C++编译后在符号库中的名字与C语言的不同。例如,假设某个函数的原型为:
void foo( int x, int y );该函数被C编译器编译后在符号库中的名字为_foo,而C++编译器则会产生像_foo_int_int之类的名字(不同的编译器可能生成的名字不同,但是都采用了相同的机制,生成的新名字称为“mangled name”)。_foo_int_int这样的名字包含了函数名、函数参数数量及类型信息,C++就是靠这种机制来实现函数重载的。例如,在C++中,函数void foo( int x, int y )与void foo( int x, float y )编译生成的符号是不相同的,后者为_foo_int_float。 同样地,C++中的变量除支持局部变量外,还支持类成员变量和全局变量。用户所编写程序的类成员变量可能与全局变量同名,我们以"."来区分。而本质上,编译器在进行编译时,与函数的处理相似,也为类中的变量取了一个独一无二的名字,这个名字与用户程序中同名的全局变量名字不同。加extern "C"声明后的编译和连接,强制C++连接器按照C编译器产生的符号_foo链接。
6,保证在使用这个头文件时,用户不用再包含使用此头文件的其他前提头文件,即要使用的头文件已经包含在此头文件里。例如:area.h头文件包含了面积相关的操作,要使用这个头文件不需同时包含了关于点操作的头文件piont.h。用户在使用area.h时不需要手动包含piont.h,因为我们已经在 area.h中用#include “point.h”包含了这个头文件。
有一些头文件是为用户提供调用接口,这种头文件中声明了模块中需要给其他模块使用的函数和数据,鉴于软件质量上的考虑,处理参考以上的规则,用来暴露接口的头文件还需要参考更多的规则:
1,一个模块一个接口,不能几个模块用一个接口。
2,文件名为和实现模块的c文件相同。abc.c--abc.h
3,尽量不要使用extern来声明一些共享的数据。因为这种做法是不安全的,外部其他模块的用户可能不能完全理解这些变量的含义,最好提供函数访问这些变量。
4,尽量避免包含其他的头文件,除非这些头文件是独立存在的。这一点的意思是,在作为接口的头文件中,尽量不要包含其他模块的那些暴露*.C文件中内容的头文件,但是可以包好一些不是用来暴露接口的头文件。
5,不要包含那些只有在可执行文件中才使用的头文件,这些头文件应该在*.c文件中包含。这一点如同上一点,为了提高接口的独立性和透明度。
6,接口文件要有面向用户的充足的注释。从应用角度描述个暴露的内容。
7,接口文件在发布后尽量避免修改,即使修改也要保证不影响用户程序。
多个代码文件使用一个接口文件:这种头文件用于那些认为一个模块使用一个文件太大的情况。对于这种情况对于这种情况在参考上述建议后,也要参考以下建议。
1,多个代码文件组成的一个模块只有一个接口文件。因为这些文件完成的是一个模块。
2,使用模块下文件命名 <系统名 > <模块名命名 >
3,不要滥用这种文件。
4,有时候也会出现几个*.c文件用于共向数据的*.h文件,这种文件的特点是在一个*.c文件里定义全局变量,而在其他*.c文件里使用,要将这种文件和用于暴露模块接口的文件区别。
5,一个模块如果有几个子模块,可以用一个*.h文件暴露接口,在这个文件里用#include包含每个子模块的接口文件。
还有一种头文件,说明性头文件,这种头文件不需要有一个对应的代码文件,在这种文件里大多包含了大量的宏定义,没有暴露的数据变量和函数。这些文件给出以下建议:
1,包含一些需要的概念性的东西.
2,命名方式,定义的功能.h
3,不包含任何其他的头文件.
4,不定义任何类型.
5,不包含任何数据和函数声明.
上面介绍了C头文件的一些建议,下面介绍C代码文件*.c文件的一些建议,*.c文件是C语言中生成汇编代码和机器码的内容,要注意以下建议:
1.命名方式 模块名.c
2,用static修饰本地的数据和函数。
3,不要使用external。这是在*.h中使用的,可以被包含进来。
4,无论什么时候定义内部的对象,确保独立与其他执行文件。
5,这个文件里必须包含相应功能函数。
上面介绍了一些C文件组织的建议,用于提高C语言项目的质量,在以后的C项目组织中,学习面向对象和COM的思想,将这些思想加入到C程序中,能够写出更高质量的代码。上面的建议在具体的项目里应该灵活运用,附录里有*.h头文件和*.c代码文件的模版,在工程中可以作为参考。另外,C工程中经常有一些汇编代码文件,这些文件也要使有*.h头文件暴露其中的数据和函数,以便其他*.c文件包含使用
//
在QT中自定义函数,信号,槽
在QT中自定义函数,信号,槽基本上都是在基类上派生时设计的
(全局变量和函数请参考http://blog.youkuaiyun.com/liang890319/article/details/7062928)
这里分两种情况讨论
一,代码模式
通过.H和.cpp设计界面布局,并通过派生设计自定义的函数,信号,槽
二,可视化设计模式
1,设计工具设计界面
2,新建类继承上面的界面,并设计自定义函数和信号 槽
------------------------------------------------------------------------------------------------------------------------
一,代码模式
通过.H和.cpp设计界面布局,并通过派生设计自定义的函数,信号,槽
使用自定义的信号和槽,需要注意以下几点:
1、类的声明和实现分别放在.h和.cpp文件中;
2、类声明中包含Q_OBJECT宏;
3、信号只要声明不要设计其的实现函数;
4、发射信号用emit关键字;
5、自定义槽的实现与普通成员函数的实现一样。
创建用户自定义的信号与槽的具体步骤:
首先你需要在类声明中声明自定义的信号和槽。在关键字public slots:下声明自定义槽;在signals:关键字下声明自定义的信号。如下例所示:
class MyMainWindow : public QWidget //在這裡繼承,派生
{
Q_OBJECT
public:
void MyMainWindow(); //自定義函數
void SetValue(int);
signals:
void ValueChanged(int); //自定義信號
public slots:
void ChangeValue(int); //自定義槽
};
正如你可能猜想到的,只有当一个新的值传递给SetValue()函数时,SetValue()函数才应该调用ValueChanged()信号。之后,通过将ValueChanged()信号连接到ChangeValue()槽,使得当有新值传递给SetValue()函数时,能够引起数值的变化。多数情况下,这是不必要的,但它演示了信号的使用方法。SetValue()函数可以像下面格式实现:
void MyMainWindow::SetValue(int value)
{
if(value!=oldvalue)
{
oldvalue=value;
emit ValueChanged(value);
}
}
如你看到的只有,当新值与旧值不同时才发射ValueChanged()信号,且oldvalue将被修改为value。应注意的是,信号与槽一类的普通函数不同,它只能使用emit关键字发射。ChangeValue()可定义为:
void MyMainWindow::ChangeValue(int value)
{
FunctionForChangingTheValue(value);
}
在这段代码中,调用 FunctionForChangingTheValue( )函数去修改数据。你需要做的最后一件事是将信号和槽连接起来:
connect(this,SIGNAL(ValueChanged(int)),this,SLOT(ChangeValue(int)));
这个例子的功能是当调用SetValue()函数时,检查新值是否等于旧值。如果不等,则发射ValueChanged()信号,又因为 ValueChanged()信号被连接到ChangeValue槽,因此当发射ValueChanged()信号时将执行ChangeValue() 槽。之后,ChangeValue()槽调用FunctionForChangingTheValue()函数去修改实际数据。
(還可參考http://wenku.baidu.com/view/5d0eeffb941ea76e58fa04ff.html
http://hi.baidu.com/wangfei775/blog/item/be40396f9b5d33d280cb4a5c.html
)
二,可视化设计模式
1,设计工具设计界面 ui_xx.h
2,新建类继承上面的界面,并设计自定义函数和信号 槽
xx.h
#include "ui_xx.h"
聲明一個新的類,
繼承設計介面,
並派生新的函數 信號 槽(可參考上面代碼)
//
自定义事件
这部分将作为Qt事件部分的结束。我们在前面已经从大概上了解了Qt的事件机制。下面要说的是如何自定义事件。
Qt允许你创建自己的事件类型,这在多线程的程序中尤其有用,当然,也可以用在单线程的程序中,作为一种对象间通讯的机制。那么,为什么我需要使用事件,而不是使用信号槽呢?主要原因是,事件的分发既可以是同步的,又可以是异步的,而函数的调用或者说是槽的回调总是同步的。事件的另外一个好处是,它可以使用过滤器。
Qt中的自定义事件很简单,同其他类似的库的使用很相似,都是要继承一个类进行扩展。在Qt中,你需要继承的类是QEvent。注意,在Qt3中,你需要继承的类是QCustomEvent,不过这个类在Qt4中已经被废除(这里的废除是不建议使用,并不是从类库中删除)。
继承QEvent类,你需要提供一个QEvent::Type类型的参数,作为自定义事件的类型值。这里的QEvent::Type类型是QEvent里面定义的一个enum,因此,你是可以传递一个int的。重要的是,你的事件类型不能和已经存在的type值重复,否则会有不可预料的错误发生!因为系统会将你的事件当做系统事件进行派发和调用。在Qt中,系统将保留0 - 999的值,也就是说,你的事件type要大于999. 具体来说,你的自定义事件的type要在QEvent::User和QEvent::MaxUser的范围之间。其中,QEvent::User值是1000,QEvent::MaxUser的值是65535。从这里知道,你最多可以定义64536个事件,相信这个数字已经足够大了!但是,即便如此,也只能保证用户自定义事件不能覆盖系统事件,并不能保证自定义事件之间不会被覆盖。为了解决这个问题,Qt提供了一个函数:registerEventType(),用于自定义事件的注册。该函数签名如下:

函数是static的,因此可以使用QEvent类直接调用。函数接受一个int值,其默认值为-1,返回值是创建的这个Type类型的值。如果hint是合法的,不会发生任何覆盖,则会返回这个值;如果hint不合法,系统会自动分配一个合法值并返回。因此,使用这个函数即可完成type值的指定。这个函数是线程安全的,因此不必另外添加同步。
你可以在QEvent子类中添加自己的事件所需要的数据,然后进行事件的发送。Qt中提供了两种发送方式:
- static bool QCoreApplication::sendEvent(QObjecy * receiver, QEvent * event):事件被QCoreApplication的notify()函数直接发送给receiver对象,返回值是事件处理函数的返回值。使用这个函数必须要在栈上创建对象,例如:
QMouseEvent event(QEvent::MouseButtonPress, pos, 0, 0, 0);
QApplication::sendEvent(mainWindow, & event);
- static bool QCoreApplication::postEvent(QObject * receiver, QEvent * event):事件被QCoreApplication追加到事件列表的最后,并等待处理,该函数将事件追加后会立即返回,并且注意,该函数是线程安全的。另外一点是,使用这个函数必须要在堆上创建对象,例如:
QApplication::postEvent( object, new MyEvent(QEvent::registerEventType(2048)));




另外,你也可以通过重写event()函数来处理自定义事件:







return QWidget:: event( event);

这两种办法都是可行的。
好了,至此,我们已经概略的介绍了Qt的事件机制,包括事件的派发、自定义等一系列的问题。下面的章节将继续我们的学习之路!
为什么使用const?采用符号常量写出的代码更容易维护;指针常常是边读边移动,而不是边写边移动;许多函数参数是只读不写的。const最常见用途是作为数组的界和switch分情况标号(也可以用枚举符代替),分类如下:
常变量: const 类型说明符 变量名
常引用: const 类型说明符 &引用名
常对象: 类名 const 对象名
常成员函数: 类名::fun(形参) const
常数组: 类型说明符 const 数组名[大小]
常指针: const 类型说明符* 指针名 ,类型说明符* const 指针名
首先提示的是:在常变量(const 类型说明符 变量名)、常引用(const 类型说明符 &引用名)、常对象(类名 const 对象名)、 常数组(类型说明符 const 数组名[大小]), const” 与 “类型说明符”或“类名”(其实类名是一种自定义的类型说明符) 的位置可以互换。如:
const int a=5; 与 int const a=5; 等同
类名 const 对象名 与 const 类名 对象名 等同
用法1:常量
取代了C中的宏定义,声明时必须进行初始化(!c++类中则不然)。const限制了常量的使用方式,并没有描述常量应该如何分配。如果编译器知道了某const的所有使用,它甚至可以不为该const分配空间。最简单的常见情况就是常量的值在编译时已知,而且不需要分配存储。―《C++ Program Language》
用const声明的变量虽然增加了分配空间,但是可以保证类型安全。
C标准中,const定义的常量是全局的,C++中视声明位置而定。
用法2:指针和常量
使用指针时涉及到两个对象:该指针本身和被它所指的对象。将一个指针的声明用const“预先固定”将使那个对象而不是使这个指针成为常量。要将指针本身而不是被指对象声明为常量,必须使用声明运算符*const。
所以出现在 * 之前的const是作为基础类型的一部分:
char *const cp; //到char的const指针
char const *pc1; //到const char的指针
const char *pc2; //到const char的指针(后两个声明是等同的)
从右向左读的记忆方式:
cp is a const pointer to char. 故pc不能指向别的字符串,但可以修改其指向的字符串的内容
pc2 is a pointer to const char. 故*pc2的内容不可以改变,但pc2可以指向别的字符串
且注意:允许把非 const 对象的地址赋给指向 const 对象的指针,不允许把一个 const 对象的地址赋给一个普通的、非 const 对象的指针。
用法3:const修饰函数传入参数
将函数传入参数声明为const,以指明使用这种参数仅仅是为了效率的原因,而不是想让调用函数能够修改对象的值。同理,将指针参数声明为const,函数将不修改由这个参数所指的对象。
通常修饰指针参数和引用参数:
void Fun( const A *in); //修饰指针型传入参数
void Fun(const A &in); //修饰引用型传入参数
用法4:修饰函数返回值
可以阻止用户修改返回值。返回值也要相应的付给一个常量或常指针。
用法5:const修饰成员函数(c++特性)
const对象只能访问const成员函数,而非const对象可以访问任意的成员函数,包括const成员函数;
const对象的成员是不能修改的,而通过指针维护的对象确实可以修改的;
const成员函数不可以修改对象的数据,不管对象是否具有const性质。编译时以是否修改成员数据为依据进行检查。
具体展开来讲:
(一). 常量与指针
常量与指针放在一起很容易让人迷糊。对于常量指针和指针常量也不是所有的学习C/C++的人都能说清除。例如:
const int *m1 = new int(10);
int* const m2 = new int(20);
在上面的两个表达式中,最容易让人迷惑的是const到底是修饰指针还是指针指向的内存区域?其实,只要知道:const只对它左边的东西起作用,唯一的例外就是const本身就是最左边的修饰符,那么它才会对右边的东西起作用。根据这个规则来判断,m1应该是常量指针(即,不能通过m1来修改它所指向的内容。);而m2应该是指针常量(即,不能让m2指向其他的内存模块)。由此可见:
1. 对于常量指针,不能通过该指针来改变所指的内容。即,下面的操作是错误的:
int i = 10;
const int *pi = &i;
*pi = 100;
因为你在试图通过pi改变它所指向的内容。但是,并不是说该内存块中的内容不能被修改。我们仍然可以通过其他方式去修改其中的值。例如:
// 1: 通过i直接修改。
i = 100;
// 2: 使用另外一个指针来修改。
int *p = (int*)pi;
*p = 100;
实际上,在将程序载入内存的时候,会有专门的一块内存区域来存放常量。但是,上面的i本身不是常量,是存放在栈或者堆中的。我们仍然可以修改它的值。而pi不能修改指向的值应该说是编译器的一个限制。
2. 根据上面const的规则,const int *m1 = new int(10);我们也可写作:
int const *m1 = new int(10);
这是,理由就不须作过多说明了。
3. 在函数参数中指针常量时表示不允许将该指针指向其他内容。
void func_02(int* const p)
{
int *pi = new int(100);
//错误!P是指针常量。不能对它赋值。
p = pi;
}
int main()
{
int* p = new int(10);
func_02(p);
delete p;
return 0;
}
4. 在函数参数中使用常量指针时表示在函数中不能改变指针所指向的内容。
void func(const int *pi)
{
//错误!不能通过pi去改变pi所指向的内容!
*pi = 100;
}
int main()
{
int* p = new int(10);
func(p);
delete p;
return 0;
}
我们可以使用这样的方法来防止函数调用者改变参数的值。但是,这样的限制是有限的,作为参数调用者,我们也不要试图去改变参数中的值。因此,下面的操作是在语法上是正确的,但是可能破还参数的值:
#include <iostream>
#include <string>
void func(const int *pi)
{
//这里相当于重新构建了一个指针,指向相同的内存区域。当然就可以通过该指针修改内存中的值了。
int* pp = (int*)pi;
*pp = 100;
}
int main()
{
using namespace std;
int* p = new int(10);
cout << "*p = " << *p << endl;
func(p);
cout << "*p = " << *p << endl;
delete p;
return 0;
}
(二):常量与引用
常量与引用的关系稍微简单一点。因为引用就是另一个变量的别名,它本身就是一个常量。也就是说不能再让一个引用成为另外一个变量的别名, 那么他们只剩下代表的内存区域是否可变。即:
int i = 10;
// 正确:表示不能通过该引用去修改对应的内存的内容。
const int& ri = i;
// 错误!不能这样写。
int& const rci = i;
由此可见,如果我们不希望函数的调用者改变参数的值。最可靠的方法应该是使用引用。下面的操作会存在编译错误:
void func(const int& i)
{
// 错误!不能通过i去改变它所代表的内存区域。
i = 100;
}
int main()
{
int i = 10;
func(i);
return 0;
}
这里已经明白了常量与指针以及常量与引用的关系。但是,有必要深入的说明以下。在系统加载程序的时候,系统会将内存分为4个区域:堆区 栈区全局区(静态)和代码区。从这里可以看出,对于常量来说,系统没有划定专门的区域来保护其中的数据不能被更改。也就是说,使用常量的方式对数据进行保护是通过编译器作语法限制来实现的。我们仍然可以绕过编译器的限制去修改被定义为“常量”的内存区域。看下面的代码:
const int i = 10;
// 这里i已经被定义为常量,但是我们仍然可以通过另外的方式去修改它的值。
// 这说明把i定义为常量,实际上是防止通过i去修改所代表的内存。
int *pi = (int*) &i;
(三):常量函数
常量函数是C++对常量的一个扩展,它很好的确保了C++中类的封装性。在C++中,为了防止类的数据成员被非法访问,将类的成员函数分成了两类,一类是常量成员函数(也被称为观察着);另一类是非常量成员函数(也被成为变异者)。在一个函数的签名后面加上关键字const后该函数就成了常量函数。对于常量函数,最关键的不同是编译器不允许其修改类的数据成员。例如:
class Test
{
public:
void func() const;
private:
int intValue;
};
void Test::func() const
{
intValue = 100;
}
上面的代码中,常量函数func函数内试图去改变数据成员intValue的值,因此将在编译的时候引发异常。
当然,对于非常量的成员函数,我们可以根据需要读取或修改数据成员的值。但是,这要依赖调用函数的对象是否是常量。通常,如果我们把一个类定义为常量,我们的本意是希望他的状态(数据成员)不会被改变。那么,如果一个常量的对象调用它的非常量函数会产生什么后果呢?看下面的代码:
class Fred{
public:
void inspect() const;
void mutate();
};
void UserCode(Fred& changeable, const Fred& unChangeable)
{
changeable.inspect(); // 正确,非常量对象可以调用常量函数。
changeable.mutate(); // 正确,非常量对象也允许修改调用非常量成员函数修改数据成员。
unChangeable.inspect(); // 正确,常量对象只能调用常理函数。因为不希望修改对象状态。
unChangeable.mutate(); // 错误!常量对象的状态不能被修改,而非常量函数存在修改对象状态的可能
}
从上面的代码可以看出,由于常量对象的状态不允许被修改,因此,通过常量对象调用非常量函数时将会产生语法错误。实际上,我们知道每个成员函数都有一个隐含的指向对象本身的this指针。而常量函数则包含一个this的常量指针。如下:
void inspect(const Fred* this) const;
void mutate(Fred* this);
也就是说对于常量函数,我们不能通过this指针去修改对象对应的内存块。但是,在上面我们已经知道,这仅仅是编译器的限制,我们仍然可以绕过编译器的限制,去改变对象的状态。看下面的代码:
class Fred{
public:
void inspect() const;
private:
int intValue;
};
void Fred::inspect() const
{
cout << "At the beginning. intValue = "<< intValue << endl;
// 这里,我们根据this指针重新定义了一个指向同一块内存地址的指针。
// 通过这个新定义的指针,我们仍然可以修改对象的状态。
Fred* pFred = (Fred*)this;
pFred->intValue = 50;
cout << "Fred::inspect() called. intValue = "<< intValue << endl;
}
int main()
{
Fred fred;
fred.inspect();
return 0;
}
上面的代码说明,只要我们愿意,我们还是可以通过常量函数修改对象的状态。同理,对于常量对象,我们也可以构造另外一个指向同一块内存的指针去修改它的状态。这里就不作过多描述了。
另外,也有这样的情况,虽然我们可以绕过编译器的错误去修改类的数据成员。但是C++也允许我们在数据成员的定义前面加上mutable,以允许该成员可以在常量函数中被修改。例如:
class Fred{
public:
void inspect() const;
private:
mutable int intValue;
};
void Fred::inspect() const
{
intValue = 100;
}
但是,并不是所有的编译器都支持mutable关键字。这个时候我们上面的歪门邪道就有用了。
关于常量函数,还有一个问题是重载。
#include <iostream>
#include <string>
using namespace std;
class Fred{
public:
void func() const;
void func();
};
void Fred::func() const
{
cout << "const function is called."<< endl;
}
void Fred::func()
{
cout << "non-const function is called."<< endl;
}
void UserCode(Fred& fred, const Fred& cFred)
{
cout << "fred is non-const object, and the result of fred.func() is:" << endl;
fred.func();
cout << "cFred is const object, and the result of cFred.func() is:" << endl;
cFred.func();
}
int main()
{
Fred fred;
UserCode(fred, fred);
return 0;
}
输出结果为:
fred is non-const object, and the result of fred.func() is:
non-const function is called.
cFred is const object, and the result of cFred.func() is:
const function is called.
从上面的输出结果,我们可以看出。当存在同名同参数和返回值的常量函数和非常量函数时,具体调用哪个函数是根据调用对象是常量对像还是非常量对象来决定的。常量对象调用常量成员;非常量对象调用非常量的成员。
总之,我们需要明白常量函数是为了最大程度的保证对象的安全。通过使用常量函数,我们可以只允许必要的操作去改变对象的状态,从而防止误操作对对象状态的破坏。但是,就像上面看见的一样,这样的保护其实是有限的。关键还是在于我们开发人员要严格的遵守使用规则。另外需要注意的是常量对象不允许调用非常量的函数。这样的规定虽然很武断,但如果我们都根据原则去编写或使用类的话这样的规定也就完全可以理解了。
(四):常量返回值
很多时候,我们的函数中会返回一个地址或者引用。调用这得到这个返回的地址或者引用后就可以修改所指向或者代表的对象。这个时候如果我们不希望这个函数的调用这修改这个返回的内容,就应该返回一个常量。这应该很好理解,大家可以去试试。
+++++++++++++++++++++++++++++++++++++++
c++ 中const
+++++++++++++++++++++++++++++++++++++++
1. const常量,如const int max = 100;
优点:const常量有数据类型,而宏常量没有数据类型。编译器可以对前者进行类型安全检查,而对后者只进行字符替换,没有类型安全检查,并且在字符替换时可能会产生意料不到的错误(边际效应)
2. const 修饰类的数据成员。如:
class A
{
const int size;
…
}
const数据成员只在某个对象生存期内是常量,而对于整个类而言却是可变的。因为类可以创建多个对象,不同的对象其const数据成员的值可以不同。所以不能在类声明中初始化const数据成员,因为类的对象未被创建时,编译器不知道const 数据成员的值是什么。如
class A
{
const int size = 100; //错误
int array[size]; //错误,未知的size
}
const数据成员的初始化只能在类的构造函数的初始化表中进行。要想建立在整个类中都恒定的常量,应该用类中的枚举常量来实现。如
class A
{…
enum {size1=100, size2 = 200 };
int array1[size1];
int array2[size2];
}
枚举常量不会占用对象的存储空间,他们在编译时被全部求值。但是枚举常量的隐含数据类型是整数,其最大值有限,且不能表示浮点数。
3. const修饰指针的情况,见下式:
int b = 500;
const int* a = & [1]
int const *a = & [2]
int* const a = & [3]
const int* const a = & [4]
如果你能区分出上述四种情况,那么,恭喜你,你已经迈出了可喜的一步。不知道,也没关系,我们可以参考《Effectivec++》Item21上的做法,如果const位于星号的左侧,则const就是用来修饰指针所指向的变量,即指针指向为常量;如果const位于星号的右侧,const就是修饰指针本身,即指针本身是常量。因此,[1]和[2]的情况相同,都是指针所指向的内容为常量(const放在变量声明符的位置无关),这种情况下不允许对内容进行更改操作,如不能*a = 3;[3]为指针本身是常量,而指针所指向的内容不是常量,这种情况下不能对指针本身进行更改操作,如a++是错误的;[4]为指针本身和指向的内容均为常量。
4. const的初始化
先看一下const变量初始化的情况
1) 非指针const常量初始化的情况:A b;
const A a = b;
2) 指针const常量初始化的情况:
A* d = new A();
const A* c = d;
或者:const A* c = new A();
3)引用const常量初始化的情况:
A f;
const A& e = f; // 这样作e只能访问声明为const的函数,而不能访问一般的成员函数;
[思考1]: 以下的这种赋值方法正确吗?
const A* c=new A();
A* e = c;
[思考2]: 以下的这种赋值方法正确吗?
A* const c = new A();
A* b = c;
5. 另外const 的一些强大的功能在于它在函数声明中的应用。在一个函数声明中,const可以修饰函数的返回值,或某个参数;对于成员函数,还可以修饰是整个函数。有如下几种情况,以下会逐渐的说明用法:A&operator=(const A& a);
void fun0(const A* a );
void fun1( ) const; // fun1( ) 为类成员函数
const A fun2( );
1) 修饰参数的const,如 void fun0(const A* a ); void fun1(const A& a);
调用函数的时候,用相应的变量初始化const常量,则在函数体中,按照const所修饰的部分进行常量化,如形参为const A*a,则不能对传递进来的指针的内容进行改变,保护了原指针所指向的内容;如形参为const A&a,则不能对传递进来的引用对象进行改变,保护了原对象的属性。
[注意]:参数const通常用于参数为指针或引用的情况,且只能修饰输入参数;若输入参数采用“值传递”方式,由于函数将自动产生临时变量用于复制该参数,该参数本就不需要保护,所以不用const修饰。
[总结]对于非内部数据类型的输入参数,因该将“值传递”的方式改为“const引用传递”,目的是为了提高效率。例如,将void Func(A a)改为void Func(const A &a)
对于内部数据类型的输入参数,不要将“值传递”的方式改为“const引用传递”。否则既达不到提高效率的目的,又降低了函数的可理解性。例如void Func(int x)不应该改为void Func(const int &x)
2) 修饰返回值的const,如const A fun2( ); const A* fun3( );
这样声明了返回值后,const按照"修饰原则"进行修饰,起到相应的保护作用。const Rational operator*(const Rational& lhs, const Rational& rhs)
{
return Rational(lhs.numerator() * rhs.numerator(),
lhs.denominator() * rhs.denominator());
}
返回值用const修饰可以防止允许这样的操作发生:Rational a,b;
Radional c;
(a*b) = c;
一般用const修饰返回值为对象本身(非引用和指针)的情况多用于二目操作符重载函数并产生新对象的时候。
[总结]
1. 一般情况下,函数的返回值为某个对象时,如果将其声明为const时,多用于操作符的重载。通常,不建议用const修饰函数的返回值类型为某个对象或对某个对象引用的情况。原因如下:如果返回值为某个对象为const(const A test = A实例)或某个对象的引用为const(const A& test = A实例),则返回值具有const属性,则返回实例只能访问类A中的公有(保护)数据成员和const成员函数,并且不允许对其进行赋值操作,这在一般情况下很少用到。
2. 如果给采用“指针传递”方式的函数返回值加const修饰,那么函数返回值(即指针)的内容不能被修改,该返回值只能被赋给加const 修饰的同类型指针。如:
const char * GetString(void);
如下语句将出现编译错误:
char *str=GetString();
正确的用法是:
const char *str=GetString();
3. 函数返回值采用“引用传递”的场合不多,这种方式一般只出现在类的赙值函数中,目的是为了实现链式表达。如:
class A
{…
A &operate = (const A &other); //负值函数
}
A a,b,c; //a,b,c为A的对象
…
a=b=c; //正常
(a=b)=c; //不正常,但是合法
若负值函数的返回值加const修饰,那么该返回值的内容不允许修改,上例中a=b=c依然正确。(a=b)=c就不正确了。
[思考3]: 这样定义赋值操作符重载函数可以吗?
const A& operator=(const A& a);
6. 类成员函数中const的使用
一般放在函数体后,形如:void fun() const;
任何不会修改数据成员的函数都因该声明为const类型。如果在编写const成员函数时,不慎修改了数据成员,或者调用了其他非const成员函数,编译器将报错,这大大提高了程序的健壮性。如:
class Stack
{
public:
void Push(int elem);
int Pop(void);
int GetCount(void) const; //const 成员函数
private:
int m_num;
int m_data[100];
};
int Stack::GetCount(void) const
{
++m_num; //编译错误,企图修改数据成员m_num
Pop(); //编译错误,企图调用非const函数
Return m_num;
}
7. 使用const的一些建议
1) 要大胆的使用const,这将给你带来无尽的益处,但前提是你必须搞清楚原委;
2) 要避免最一般的赋值操作错误,如将const变量赋值,具体可见思考题;
3) 在参数中使用const应该使用引用或指针,而不是一般的对象实例,原因同上;
4) const在成员函数中的三种用法(参数、返回值、函数)要很好的使用;
5) 不要轻易的将函数的返回值类型定为const;
6) 除了重载操作符外一般不要将返回值类型定为对某个对象的const引用;
[思考题答案]
1) 这种方法不正确,因为声明指针的目的是为了对其指向的内容进行改变,而声明的指针e指向的是一个常量,所以不正确;
2) 这种方法正确,因为声明指针所指向的内容可变;
3) 这种做法不正确;
在const A::operator=(const A& a)中,参数列表中的const的用法正确,而当这样连续赋值的时侯,问题就出现了:
A a,b,c:
(a=b)=c;
因为a.operator=(b)的返回值是对a的const引用,不能再将c赋值给const常量。
++++++++++++++++++++++++++++++++++++++++
const 在c和c++中的区别 http://tech.e800.com.cn/articles/2009/722/1248229886744_1.html
++++++++++++++++++++++++++++++++++++++++
1. C++中的const正常情况下是看成编译期的常量,编译器并不为const分配空间,只是在编译的时候将期值保存在名字表中,并在适当的时候折合在代码中.所以,以下代码:
using namespace std;
int main()
{
const int a = 1;
const int b = 2;
int array[ a + b ] = {0};
for (int i = 0; i < sizeof array / sizeof *array; i++)
{
cout << array << endl;
}
}
在可以通过编译,并且正常运行.但稍加修改后,放在C编译器中,便会出现错误:
int main()
{
int i;
const int a = 1;
const int b = 2;
int array[ a + b ] = {0};
for (i = 0; i < sizeof array / sizeof *array; i++)
{
printf("%d",array);
}
}
错误消息:
c:\test1\te.c(8): error C2057: 应输入常数表达式
c:\test1\te.c(8): error C2466: 不能分配常数大小为 0 的数组
出现这种情况的原因是:在C中,const是一个不能被改变的普通变量,既然是变量,就要占用存储空间,所以编译器不知道编译时的值.而且,数组定义时的下标必须为常量.
2. 在C语言中: const int size; 这个语句是正确的,因为它被C编译器看作一个声明,指明在别的地方分配存储空间.但在C++中这样写是不正确的.C++中const默认是内部连接,如果想在C++中达到以上的效果,必须要用extern关键字.即C++中,const默认使用内部连接.而C中使用外部连接.
(1) 内连接:编译器只对正被编译的文件创建存储空间,别的文件可以使用相同的表示符或全局变量.C/C++中内连接使用static关键字指定.
(2) 外连接:所有被编译过的文件创建一片单独存储空间.一旦空间被创建,连接器必须解决对这片存储空间的引用.全局变量和函数使用外部连接.通过extern关键字声明,可以从其他文件访问相应的变量和函数.
/* C++代码 header.h */
const int test = 1;
/* C++代码 test1.cpp */
#include "header.h"
using namespace std;
int main() { cout << "in test1 :" << test << endl; }
/* C++代码 test2.cpp */
#include "header.h"
using namespace std;
void print() { cout << "in test2:" << test << endl;}
以上代码编译连接完全不会出问题,但如果把header.h改为:
extern const int test = 1;
在连接的时候,便会出现以下错误信息:
test2 error LNK2005: "int const test" (?test@@3HB) 已经在 test1.obj 中定义
因为extern关键字告诉C++编译器test会在其他地方引用,所以,C++编译器就会为test创建存储空间,不再是简单的存储在名字表里面.所以,当两个文件同时包含header.h的时候,会发生名字上的冲突.
此种情况和C中const含义相似:
/* C代码 header.h */
const int test = 1;
/* C代码 test1.c */
#include "header.h"
int main() { printf("in test1:%d\n",test); }
/* C代码 test2.c */
#include "header.h"
void print() { printf("in test2:%d\n",test); }
错误消息:
test3 fatal error LNK1169: 找到一个或多个多重定义的符号
test3 error LNK2005: _test 已经在 test1.obj 中定义
也就是说:在c++ 中const 对象默认为文件的局部变量。与其他变量不同,除非特别说明,在全局作用域声明的 const 变量是定义该对象的文件的局部变量。此变量只存在于那个文件中,不能被其他文件访问。通过指定 const 变更为 extern,就可以在整个程序中访问 const 对象:
// file_1.cc
// defines and initializes a const that is accessible to other files
extern const int bufSize = fcn();
// file_2.cc
extern const int bufSize; // uses bufSize from file_1
// uses bufSize defined in file_1
for (int index = 0; index != bufSize; ++index)
// ...
3. C++中,是否为const分配空间要看具体情况.如果加上关键字extern或者取const变量地址,则编译器就要为const分配存储空间.
4. C++中定义常量的时候不再采用define,因为define只做简单的宏替换,并不提供类型检查.